Supplementary Figure Legends:

Fig S-1. Ablation of *E2f1-3* does not affect erythroid or lymphoid lineages in BM.

Cells isolated from femur of mice of indicated genotypes stained with lineage markers Ter119⁺, CD3⁺, B220⁺ and CD11b⁺ representing the erythroid, lymphoid and myeloid lineages respectively. (A) E2F single knockout mice. (B) E2F double knockout mice.

Fig S-2. Ablation of *E2f1-3* after BM transplant leads to reduction in myeloid population.

(A) Schematic diagram of experimental design. Bone marrow from $E2fI^{-2}2^{-2}3^{ff}$ and Mx-*Cre;E2fI^{-2}2^{-3} ff* mice was transplanted into wild type mice and 5 weeks post-transplant mice were injected with pIpC. (B) FACS profile of bone marrow cells isolated from $E2fI^{-2}2^{-2}3^{ff}$ (control) and Mx-*Cre;E2fI^{-2}2^{-3} ff* mice. (C) Bone marrow cellularity from the femur of the mice. Values are mean \pm SD (p<0.004). (D) Total number of Cd11b⁺ and Gr-1⁺ cells isolated from BM. Values are mean \pm SD (p<0.0006). (E) The percentage of apoptotic cells in BM co-stained with myeloid marker Cd11b. (F) Flow diagram depicting the hematopoietic lineages in BM. Lineages affected by the ablation of *E2f1-3* are shown in red.

Fig S-3. ChIP assay to confirm the genes involved in G_1/S and G_2/M regulation are direct targets of E2f3. CD11b⁺ myeloid cells isolated from BM of mice were subjected to ChIP assays using E2F3 antibody. (A&B) E2F3 recruitment on promoters of G_1/S and G_2/M targets in wild type myeloid cells. (C&D) ChIP assay performed in $E2f3a^{-/-}$ and $E2f3b^{-/-}$ myeloid cells to show E2F3 loading on promoters of G_1/S and G_2/M genes. (E) RT-PCR to measure the expression of E2f4-8 in $E2f1^{-/-}$ (open bars) and Mx-cre; $E2f1^{-/-}E2f2^{-/-}E2f3^{+/-}$ (closed bars) in myeloid cells.

Figure S-4. c-Myc regulates the expression of *E2f1-3*.

(A) *c-Myc* PCR genotyping on genomic DNA isolated from the control and *cre*-infected $c-Myc^{ff}$ -BMM. (B) BrdU incorporation in serum (red bars), and CSF-1 (blue bars) stimulated $c-Myc^{ff}$ -CSF1R cells. *c-Myc*^{ff}-CSF1R cells infected with either the control- or *cre*- retroviruses were serum starved for 60 hours. Quiescent MEFs were then re-stimulated with media containing serum or CSF-1 and assessed for BrdU incorporation at the indicated time points as described in "Materials and Methods". (C) *c-Myc*^{ff}-CSF1R MEFs were transfected with the *E2f3a*-luciferase plasmid, along with thymidine kinase renilla luciferase construct as an internal control. Transfected cells were incubated in low-serum and then stimulated with either serum or CSF-1 and luciferase activity was measured at the indicated time points.

Figure S-5. *E2f3a* can rescue the proliferation defect in *c-Myc* deleted cells. The *c-Myc*^{*ff*}-*CSF-1R* cell were infected with vector alone or *E2f3a*-expressing retroviruses and then with either vector alone (red) or *cre*-expressing retroviruses (blue), selected for hygromycin and puromycin resistance, and used in the following assays. (A) BrdU incorporation of *c-Myc*^{*ff*}-*CSF*-*1R* cell line. Cells were synchronized by serum starvation, stimulated by addition of CSF-1. Cells were incubated with BrdU for 2 hours and then fixed and stained at the indicated time points. A total of 500 DAPI-stained nuclei from each cell line were counted, and the percent positive for BrdU incorporation is shown. (B) *c-Myc* PCR genotyping of the population of cells from the experiment described above showing efficient deletion of *c-Myc*^{*ff*} allele produces a 300-bp fragment. (C) Cells from the experiment described above were also tested for their long-term growth potential by colony formation assay. Values shown have been corrected for deletion of *c-Myc*^{*ff*}-*CSF*-1*Myc*^{*ff*}-*CSF*-1*R* colonies.

Figure S-6. List of primers used for RT- PCR, ChIP assay and genotyping.

Supplementary Table- I. List of E2F targets upregulated and downregulated in Mx-cre; $E2f1^{-/-}$ $E2f2^{-/-}E2f3^{///}$ myeloid cells.

Supplementary Table- II. List of genes upregulated and downregulated in *Mx-cre*; $E2f1^{-/-}E2f2^{-/-}E2f3^{\#}$ myeloid cells (p<0.001).

Figure S3

Gene	Sense primer(s)	Antisense primer(s)
RT-PCR		
Mcm3	CGCAGGAAGAATGAAAAGAGGG	CTGAGGAAGCAGGAAGTGAGAGTC
Cdc6	AGTTCTGTGCCCGCAAAGTG	AGCAGCAAAGAGCAAACCAGG
Cdt1	TATGGAGGTGGTCTGTGCAA	GGCAAGGAGCTCAAAGTCAC
Nuf2	TTGGACGCTCGGTTTTTAAC	TCGGATTTGGAAGAAAATCG
Nusap1	GAGCAAGCTGAGACGGAATC	CTGTATCCCTGGGGTCTTGA
CcnF	TGAAGCAGAGGTTCGAGGAT	TCTGTCCTCCTGAAGGCTGT
<u>ChIP :</u>		
Dtl	CAGCACCGCCATCTTCTC	AACTCCCGCCACTAAGAGC
Mcm3	ATAACGCGTCTCTGCTCCAT	CACCTCGTCATCCAGGAAGT
Cdc6	TGATGAGTGACAACTAATCAG	GAGCTTTGCACTCTTCAGG
Cyc A2	TGTAAGATTCCCGTCGGGCCTTC	AGGCGGGAGGAGCGTAGAGCC
Dhfr	CGGCAATCCTAGGGTGAAGGCTGGT	GGCTCCATTCAGCGACGAAAGGTGC
Bub3	AGGAGAAGGATGTCACAAGAGC	ATTTTCCGCAGTCATCCTGT
Kif11	GGAATCGTTGCTGATTTCG	TTACCTGCATCTCACCACCA
Smc2	TCCTTAGGGCAAAAGAGGAA	GGGCCAAGAGCAGCACTAC
Nuf2	AGGGGCTAGAAACCGTCTGT	CCGAGAAGGCTCAGAAGACC

Genotype :

AGAAGTCACGCTATGAAACCTCAC	AGCCACTGGATATGATTCTTGGAC
AGTGCCAGCGGGGCTGCTAAAG	
CCTGAGCGAGTCGGAGGATGG	GCCCCTAACACATGCACCCATTGG
ACCAAAGAACGGAGCCGGTTGGCG	
TGTGAATAATTTTTGGCATGTTTT	AAGGGAAGGGAAAATTAAATCTGA
	CTTATTCTGAGTGTGGACATACCG
CACCGCCTACATCCTGTCCATTC	TACAGTCCCAAAGCCCCAGCCAAG
	AATTTAAGC CTGACCCCCGCGGCA
CTGCATTACCGGTCGATGCAAC	GCATTGCTGTCACTTGGTCGTG
	AGAAGTCACGCTATGAAACCTCAC AGTGCCAGCGGGGGCTGCTAAAG CCTGAGCGAGTCGGAGGATGG ACCAAAGAACGGAGCCGGTTGGCG TGTGAATAATTTTTGGCATGTTTT CACCGCCTACATCCTGTCCATTC CTGCATTACCGGTCGATGCAAC

Supplementary Table-1

<u>Upregulated Genes</u> :

Gene symbol	Description	Function	Ref
Mcm5	minichromosome maintenance deficient 5, cell	S	(1,2)
	minichromosome maintenance deficient 7 (S		
Mcm7	cerevisiae)	S	(2)
Mcm4	minichromosome maintenance deficient 4 homolog (S. cerevisiae)	S	(2)
Мстб	minichromosome maintenance deficient 6 (MIS5 homolog, S. pombe) (S. cerevisiae)	S	(3)
Rpa2	replication protein A2	S	(4)
Lig1	ligase I, DNA, ATP-dependent	S	(5)
Cdc6	cell division cycle 6 homolog (S. cerevisiae)	S	(6)
Rfc2	replication factor C (activator 1) 2	S	(7)
Fen1	flap structure specific endonuclease 1	S	(8)
Rad51	RAD51 homolog (S. cerevisiae)	S	(9)
Orc11	origin recognition complex, subunit 1-like (S.cereviaiae)	S	(10)
Chaf1b	chromatin assembly factor 1, subunit B (p60)	S	(11)
Cdt1	chromatin licensing and DNA replication factor 1	S	(12)
Mcm3	minichromosome maintenance deficient 3 (S. cerevisiae)	S	(13)
Dtl	denticleless homolog (Drosophila)	S	(14)
Mcm2	minichromosome maintenance deficient 2 mitotin (S. cerevisiae)	S	(15)
Pola2	polymerase (DNA directed), alpha 2	S	(16)
Rad541	RAD54 like (S. cerevisiae)	S	(17)
Gins1	GINS complex subunit 1 (Psf1 homolog)	S	(18)
Rpa1	replication protein A1	S	(19)
E2f1	E2F transcription factor 1	G_1/S	(20)
Cdkn1a	cyclin-dependent kinase inhibitor 1A (P21)	G ₁ /S	(21)
Ddb2	damage specific DNA binding protein 2	G ₁ /S	(22)
Chek1	checkpoint kinase 1 homolog (S. pombe)	G ₁ /S	(23)
Shmt1	serine hydroxymethyltransferase 1 (soluble)	G ₁ /S	(24)
Dhfr	dihvdrofolate reductase	G ₁ /S	(25)
Cdca7	cell division cycle associated 7	Others	(26)
Prkcbp1	protein kinase C binding protein 1	Others	(27)
Cenph	centromere protein H	Others	(28)
Pnpo	pyridoxine 5'-phosphate oxidase	Others	(29)
Mthfd1	methylenetetrahydrofolate dehydrogenase (NADP+ dependent), methenyltetrahydrofolate	Others	(30)

	cyclohydrolase, formyltetrahydrofolate synthase		
Elovl3	elongation of very long chain fatty acids (FEN1/Elo2, SUR4/Elo3, yeast)-like 3	Others	(31)
Mybbp1a	MYB binding protein (P160) 1a	Others	(32)
Isg2011	interferon stimulated exonuclease gene 20-like 1	Others	(33)
Usp37	ubiquitin specific peptidase 37	Others	(34)
Gls2	glutaminase 2 (liver, mitochondrial)	Others	(35)
Trim37	tripartite motif protein 37	Others	(36)
Ssbp4	single stranded DNA binding protein 4	Others	(37)
Dcp2	DCP2 decapping enzyme homolog (S. cerevisiae)	Others	(38)
Gtf2f2	general transcription factor IIF, polypeptide 2	Others	(39)
Ung	uracil DNA glycosylase	Others	(40)
Pold1	polymerase (DNA directed), delta 1, catalytic subunit	Others	(41)
Syce2	synaptonemal complex central element protein 2	Others	(42)
Fancg	Fanconi anemia, complementation group G	Others	(43)
Rad5111	RAD51-like 1 (S. cerevisiae)	Others	(44)

Downregulated Genes :

Gene symbol	Description	Function	Ref
Nusap1	nucleolar and spindle associated protein 1	G_2/M	(45)
H2afx	H2A histone family, member X	G_2/M	(46)
Spc25	SPC25, NDC80 kinetochore complex component, homolog (S. cerevisiae)	G ₂ /M	(47)
Sgol1	shugoshin-like 1 (S. pombe)	G_2/M	(48)
Ncaph	non-SMC condensin I complex, subunit H	G_2/M	(49)
Ccnf	cyclin F	G_2/M	(50)
Aspm	Asp (abnormal spindle)-like, microcephaly associated (Drosophila)	G_2/M	(51)
Prc1	protein regulator of cytokinesis 1	G_2/M	(52)
Mki67	antigen identified by monoclonal antibody Ki 67	G ₂ /M	(53)
Cenpf	centromere protein F	G_2/M	(54)
Cenpl	centromere protein L	G_2/M	(55)
Fbxo5	F-box protein 5	G_2/M	(56)
Smc2	structural maintenance of chromosomes 2	G_2/M	(57)
Nuf2	NUF2, NDC80 kinetochore complex component, homolog (S. cerevisiae)	G ₂ /M	(58)
Kif 11	kinesin family member 11	G_2/M	(59)
Skp2	S-phase kinase-associated protein 2 (p45)	G ₂ /M	(60)
Kif2c	kinesin family member 2C	G ₂ /M	(61)
Ndc80	NDC80 homolog, kinetochore complex component (S. cerevisiae)	G ₂ /M	(62)
Cenpe	centromere protein E	G_2/M	(63)
Cenpc1	centromere protein C1	G_2/M	(64)
Pbk	PDZ binding kinase	G_2/M	(65)
Kif20a	kinesin family member 20A	G_2/M	(66)
Cks2	CDC28 protein kinase regulatory subunit 2	G ₂ /M	(67)
Bub3	budding uninhibited by benzimidazoles 3 homolog (S. cerevisiae)	G ₂ /M	(68)
Stag3	stromal antigen 3	G_2/M	(69)
Lmnb1	lamin B1	G_2/M	(70)
Esco2	establishment of cohesion 1 homolog 2 (S. cerevisiae)	G ₂ /M	(71)
Cdkn2c	cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)	G ₂ /M	(72)
Ccng2	cyclin G2	G ₂ /M	(73)
Tyms	Thymidylate synthase	G_1/S	(74)
Ccne2	cyclin E2	G_1/S	(75)
Ccna2	cyclin A2	G_1/S	(76)
Tk2	thymidine kinase 2, mitochondrial	G ₁ /S	(77)
Gspt2	G1 to S phase transition 2	G_1/S	(78)

Sp1	trans-acting transcription factor 1	Others	(79)
Ier5	immediate early response 5	Others	(80)
E2f2	E2F transcription factor 2	Others	(81)
Phc1	polyhomeotic-like 1 (Drosophila)	Others	(82)
Junb	Jun-B oncogene	Others	(83)
Dbp	D site albumin promoter binding protein	Others	(84)
Syk	spleen tyrosine kinase	Others	(85)
Serbp1	Serpine1 mRNA binding protein 1	Others	(86)
Calm2	calmodulin 2	Others	(87)
Ube2t	ubiquitin-conjugating enzyme E2T (putative)	Others	(88)
Eps8	epidermal growth factor receptor pathway substrate 8	Others	(89)
Tcf19	transcription factor 19	Others	(90)
Sfrs7	splicing factor, arginine/serine-rich 7	Others	(91)
Depdc1a	DEP domain containing 1a	Others	(92)
Cklf	chemokine-like factor	Others	(93)
Brd8	bromodomain containing 8	Others	(94)
Dleu2	deleted in lymphocytic leukemia, 2	Others	(95)
H2afv	H2A histone family, member V	Others	(96)
Dhx40	DEAH (Asp-Glu-Ala-His) box polypeptide 40	Others	(97)
Dck	deoxycytidine kinase	Others	(23)
Capns2	calpain, small subunit 2	Others	(98)
Prr11	proline rich 11	Others	(99)
Top2a	topoisomerase (DNA) II alpha	Others	(100)
Letm2	leucine zipper-EF-hand containing transmembrane protein 2	Others	(101)
Dctn4	dynactin 4	Others	(102)
Mrp63	mitochondrial ribosomal protein 63	Others	(103)
Rnf167	ring finger protein 167	Others	(99)
Id3	inhibitor of DNA binding 3	Others	(104)
Mycn	v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian)	Others	(105)
Apoe	apolipoprotein E	Others	(106)
Sft2d3	SFT2 domain containing 3	Others	(107)
Dbp	D site albumin promoter binding protein	Others	(108)
Hist2h2aa2	histone cluster 2, H2aa2	Others	(109)
Hist3h2a	histone cluster 3, H2a	Others	(110)
Hist1h1e	histone cluster 1, H1e	Others	(111)
Asf1b	ASF1 anti-silencing function 1 homolog B (S. cerevisiae)	Others	(112)

References:

- 1. Ferguson, R., and Maller, J. (2008) *J Cell Sci* **121**, 3224-3232
- 2. You, Z., and Masai, H. (2005) Nucleic Acids Res 33, 3033-3047
- 3. You, Z., Komamura, Y., and Ishimi, Y. (1999) *Mol Cell Biol* **19**, 8003-8015
- 4. Manthey, K., Opiyo, S., Glanzer, J., Dimitrova, D., Elliott, J., and Oakley, G. (2007) *J Cell Sci* **120**, 4221-4229
- 5. Bentley, D., Harrison, C., Ketchen, A., Redhead, N., Samuel, K., Waterfall, M., Ansell, J., and Melton, D. (2002) *J Cell Sci* **115**, 1551-1561
- 6. Boronat, S., and Campbell, J. (2008) Cell Cycle 7, 597-601
- 7. Tomida, J., Masuda, Y., Hiroaki, H., Ishikawa, T., Song, I., Tsurimoto, T., Tateishi, S., Shiomi, T., Kamei, Y., Kim, J., Kamiya, K., Vaziri, C., Ohmori, H., and Todo, T. (2008) *J Biol Chem* **283**, 9071-9079
- Larsen, E., Gran, C., Saether, B., Seeberg, E., and Klungland, A. (2003) *Mol Cell Biol* 23, 5346-5353
- 9. Wray, J., Liu, J., Nickoloff, J., and Shen, Z. (2008) Cancer Res 68, 2699-2707
- 10. Bowers, J., Randell, J., Chen, S., and Bell, S. (2004) *Mol Cell* **16**, 967-978
- 11. Takami, Y., Ono, T., Fukagawa, T., Shibahara, K., and Nakayama, T. (2007) *Mol Biol Cell* **18**, 129-141
- 12. Lutzmann, M., and Méchali, M. (2008) Mol Cell 31, 190-200
- 13. Lin, D., Aggarwal, P., and Diehl, J. (2008) *Proc Natl Acad Sci U S A* **105**, 8079-8084
- 14. Sansam, C., Shepard, J., Lai, K., Ianari, A., Danielian, P., Amsterdam, A., Hopkins, N., and Lees, J. (2006) *Genes Dev* **20**, 3117-3129
- 15. Bochman, M., and Schwacha, A. (2008) *Mol Cell* **31**, 287-293
- Mizuno, T., Yamagishi, K., Miyazawa, H., and Hanaoka, F. (1999) *Mol Cell Biol* 19, 7886-7896
- 17. Mills, K., Ferguson, D., Essers, J., Eckersdorff, M., Kanaar, R., and Alt, F. (2004) *Genes Dev* 18, 1283-1292
- 18. Chang, Y., Wang, G., Bermudez, V., Hurwitz, J., and Chen, X. (2007) *Proc Natl Acad Sci U S A* **104**, 12685-12690
- 19. Liu, J., Kuo, S., and Melendy, T. (2006) J Cell Biochem 99, 1452-1462
- 20. Field, S., Tsai, F., Kuo, F., Zubiaga, A., Kaelin, W. J., Livingston, D., Orkin, S., and Greenberg, M. (1996) *Cell* **85**, 549-561
- 21. Cheng, T., Rodrigues, N., Shen, H., Yang, Y., Dombkowski, D., Sykes, M., and Scadden, D. (2000) *Science* **287**, 1804-1808
- 22. Prost, S., Lu, P., Caldwell, H., and Harrison, D. (2007) Oncogene 26, 3572-3581
- 23. Shimada, M., Niida, H., Zineldeen, D., Tagami, H., Tanaka, M., Saito, H., and Nakanishi, M. (2008) *Cell* **132**, 221-232
- 24. Woeller, C., Anderson, D., Szebenyi, D., and Stover, P. (2007) *J Biol Chem* **282**, 17623-17631
- 25. Nicolas, E., Roumillac, C., and Trouche, D. (2003) *Mol Cell Biol* 23, 1614-1622
- Osthus, R., Karim, B., Prescott, J., Smith, B., McDevitt, M., Huso, D., and Dang, C. (2005) *Cancer Res* 65, 5620-5627
- 27. Fossey, S., Kuroda, S., Price, J., Pendleton, J., Freedman, B., and Bowden, D. (2000) *Mamm Genome* **11**, 919-925

- Fukagawa, T., Mikami, Y., Nishihashi, A., Regnier, V., Haraguchi, T., Hiraoka, Y., Sugata, N., Todokoro, K., Brown, W., and Ikemura, T. (2001) *EMBO J* 20, 4603-4617
- Khayat, M., Korman, S., Frankel, P., Weintraub, Z., Hershckowitz, S., Sheffer, V., Ben Elisha, M., Wevers, R., and Falik-Zaccai, T. (2008) *Mol Genet Metab* 94, 431-434
- 30. Christensen, K., Rohlicek, C., Andelfinger, G., Michaud, J., Bigras, J., Richter, A., Mackenzie, R., and Rozen, R. (2009) *Hum Mutat* **30**, 212-220
- 31. Brolinson, A., Fourcade, S., Jakobsson, A., Pujol, A., and Jacobsson, A. (2008) *Endocrinology* **149**, 3158-3166
- 32. Yamauchi, T., Keough, R., Gonda, T., and Ishii, S. (2008) Genes Cells 13, 27-39
- 33. Kawase, T., Ichikawa, H., Ohta, T., Nozaki, N., Tashiro, F., Ohki, R., and Taya, Y. (2008) *Oncogene* **27**, 3797-3810
- 34. Hochstrasser, M. (2009) Nature 458, 422-429
- 35. Squires, S., Ewart, H., McCarthy, C., Brosnan, M., and Brosnan, J. (1997) *Diabetes* **46**, 1945-1949
- 36. Kallijärvi, J., Avela, K., Lipsanen-Nyman, M., Ulmanen, I., and Lehesjoki, A. (2002) *Am J Hum Genet* **70**, 1215-1228
- 37. Castro, P., Liang, H., Liang, J., and Nagarajan, L. (2002) Genomics 80, 78-85
- 38. Floor, S., Jones, B., and Gross, J. *RNA Biol* 5, 189-192
- 39. Purrello, M., Di Pietro, C., Rapisarda, A., Mirabile, E., Motta, S., Sichel, G., and Grzeschik, K. (1995) *Cytogenet Cell Genet* **69**, 75-80
- Begum, N., Kinoshita, K., Kakazu, N., Muramatsu, M., Nagaoka, H., Shinkura, R., Biniszkiewicz, D., Boyer, L., Jaenisch, R., and Honjo, T. (2004) *Science* 305, 1160-1163
- 41. Venkatesan, R., Treuting, P., Fuller, E., Goldsby, R., Norwood, T., Gooley, T., Ladiges, W., Preston, B., and Loeb, L. (2007) *Mol Cell Biol* **27**, 7669-7682
- 42. Bolcun-Filas, E., Costa, Y., Speed, R., Taggart, M., Benavente, R., De Rooij, D., and Cooke, H. (2007) *J Cell Biol* **176**, 741-747
- Yamamoto, K., Ishiai, M., Matsushita, N., Arakawa, H., Lamerdin, J., Buerstedde, J., Tanimoto, M., Harada, M., Thompson, L., and Takata, M. (2003) *Mol Cell Biol* 23, 5421-5430
- 44. Sellick, G., Fielding, S., Qureshi, M., Catovsky, D., and Houlston, R. (2008) *Leuk Lymphoma* **49**, 130-133
- 45. Ribbeck, K., Groen, A., Santarella, R., Bohnsack, M., Raemaekers, T., Köcher, T., Gentzel, M., Görlich, D., Wilm, M., Carmeliet, G., Mitchison, T., Ellenberg, J., Hoenger, A., and Mattaj, I. (2006) *Mol Biol Cell* **17**, 2646-2660
- 46. Kinner, A., Wu, W., Staudt, C., and Iliakis, G. (2008) *Nucleic Acids Res* **36**, 5678-5694
- 47. McCleland, M., Kallio, M., Barrett-Wilt, G., Kestner, C., Shabanowitz, J., Hunt, D., Gorbsky, G., and Stukenberg, P. (2004) *Curr Biol* **14**, 131-137
- Wang, X., Yang, Y., Duan, Q., Jiang, N., Huang, Y., Darzynkiewicz, Z., and Dai, W. (2008) *Dev Cell* 14, 331-341
- 49. Schmiesing, J., Ball, A. J., Gregson, H., Alderton, J., Zhou, S., and Yokomori, K. (1998) *Proc Natl Acad Sci U S A* **95**, 12906-12911

- 50. Kong, M., Barnes, E., Ollendorff, V., and Donoghue, D. (2000) *EMBO J* **19**, 1378-1388
- 51. Kouprina, N., Pavlicek, A., Collins, N., Nakano, M., Noskov, V., Ohzeki, J., Mochida, G., Risinger, J., Goldsmith, P., Gunsior, M., Solomon, G., Gersch, W., Kim, J., Barrett, J., Walsh, C., Jurka, J., Masumoto, H., and Larionov, V. (2005) *Hum Mol Genet* 14, 2155-2165
- 52. Zhu, C., Lau, E., Schwarzenbacher, R., Bossy-Wetzel, E., and Jiang, W. (2006) *Proc Natl Acad Sci U S A* **103**, 6196-6201
- 53. Kim, Y., Ketter, R., Steudel, W., and Feiden, W. (2007) *Am J Clin Pathol* **128**, 118-125
- 54. Evans, H., Edwards, L., and Goodwin, R. (2007) Exp Cell Res 313, 2427-2437
- 55. Gieni, R., Chan, G., and Hendzel, M. (2008) *J Cell Biochem* **104**, 2027-2039
- 56. Di Fiore, B., and Pines, J. (2007) *J Cell Biol* **177**, 425-437
- 57. Losada, A., Hirano, M., and Hirano, T. (2002) Genes Dev 16, 3004-3016
- 58. Mikami, Y., Hori, T., Kimura, H., and Fukagawa, T. (2005) *Mol Cell Biol* **25**, 1958-1970
- 59. Castillo, A., Morse, H. r., Godfrey, V., Naeem, R., and Justice, M. (2007) *Cancer Res* 67, 10138-10147
- 60. Nakayama, K., Nagahama, H., Minamishima, Y., Miyake, S., Ishida, N., Hatakeyama, S., Kitagawa, M., Iemura, S., Natsume, T., and Nakayama, K. (2004) *Dev Cell* **6**, 661-672
- 61. Shimo, A., Tanikawa, C., Nishidate, T., Lin, M., Matsuda, K., Park, J., Ueki, T., Ohta, T., Hirata, K., Fukuda, M., Nakamura, Y., and Katagiri, T. (2008) *Cancer Sci* **99**, 62-70
- 62. Williams, B., Leung, G., Maiato, H., Wong, A., Li, Z., Williams, E., Kirkpatrick, C., Aquadro, C., Rieder, C., and Goldberg, M. (2007) *J Cell Sci* **120**, 3522-3533
- 63. Putkey, F., Cramer, T., Morphew, M., Silk, A., Johnson, R., McIntosh, J., and Cleveland, D. (2002) *Dev Cell* **3**, 351-365
- Wong, L., Brettingham-Moore, K., Chan, L., Quach, J., Anderson, M., Northrop, E., Hannan, R., Saffery, R., Shaw, M., Williams, E., and Choo, K. (2007) *Genome Res* 17, 1146-1160
- 65. Abe, Y., Takeuchi, T., Kagawa-Miki, L., Ueda, N., Shigemoto, K., Yasukawa, M., and Kito, K. (2007) *J Mol Biol* **370**, 231-245
- 66. Hill, E., Clarke, M., and Barr, F. (2000) *EMBO J* **19**, 5711-5719
- 67. Spruck, C., de Miguel, M., Smith, A., Ryan, A., Stein, P., Schultz, R., Lincoln, A., Donovan, P., and Reed, S. (2003) *Science* **300**, 647-650
- 68. Tange, Y., and Niwa, O. (2008) *Genetics* **179**, 785-792
- 69. Storre, J., Schäfer, A., Reichert, N., Barbero, J., Hauser, S., Eilers, M., and Gaubatz, S. (2005) *J Biol Chem* **280**, 41380-41386
- 70. Vergnes, L., Péterfy, M., Bergo, M., Young, S., and Reue, K. (2004) *Proc Natl Acad Sci U S A* **101**, 10428-10433
- Vega, H., Waisfisz, Q., Gordillo, M., Sakai, N., Yanagihara, I., Yamada, M., van Gosliga, D., Kayserili, H., Xu, C., Ozono, K., Jabs, E., Inui, K., and Joenje, H. (2005) Nat Genet 37, 468-470
- 72. Myers, T., Andreuzza, S., and Franklin, D. (2004) *Exp Cell Res* **300**, 365-378

- 73. Martínez-Gac, L., Marqués, M., García, Z., Campanero, M., and Carrera, A. (2004) *Mol Cell Biol* **24**, 2181-2189
- 74. Le François, B., Maroun, J., and Birnboim, H. (2007) Br J Cancer 97, 1242-1250
- Geng, Y., Lee, Y., Welcker, M., Swanger, J., Zagozdzon, A., Winer, J., Roberts, J., Kaldis, P., Clurman, B., and Sicinski, P. (2007) *Mol Cell* 25, 127-139
- 76. Farràs, R., Baldin, V., Gallach, S., Acquaviva, C., Bossis, G., Jariel-Encontre, I., and Piechaczyk, M. (2008) *Mol Cell Biol* **28**, 4173-4187
- 77. Akman, H., Dorado, B., López, L., García-Cazorla, A., Vilà, M., Tanabe, L., Dauer, W., Bonilla, E., Tanji, K., and Hirano, M. (2008) *Hum Mol Genet* **17**, 2433-2440
- 78. Hoshino, S., Imai, M., Mizutani, M., Kikuchi, Y., Hanaoka, F., Ui, M., and Katada, T. (1998) *J Biol Chem* **273**, 22254-22259
- 79. Banchio, C., Schang, L., and Vance, D. (2004) J Biol Chem 279, 40220-40226
- 80. Williams, M., Lyu, M., Yang, Y., Lin, E., Dunbrack, R., Birren, B., Cunningham, J., and Hunter, K. (1999) *Genomics* **55**, 327-334
- 81. Scheijen, B., Bronk, M., van der Meer, T., De Jong, D., and Bernards, R. (2004) *J Biol Chem* **279**, 10476-10483
- 82. Ohtsubo, M., Yasunaga, S., Ohno, Y., Tsumura, M., Okada, S., Ishikawa, N., Shirao, K., Kikuchi, A., Nishitani, H., Kobayashi, M., and Takihara, Y. (2008) *Proc Natl Acad Sci U S A* **105**, 10396-10401
- 83. Bakiri, L., Lallemand, D., Bossy-Wetzel, E., and Yaniv, M. (2000) *EMBO J* **19**, 2056-2068
- 84. Gachon, F., Olela, F., Schaad, O., Descombes, P., and Schibler, U. (2006) *Cell Metab* **4**, 25-36
- Kawakami, Y., Kitaura, J., Yao, L., McHenry, R., Newton, A., Kang, S., Kato, R., Leitges, M., Rawlings, D., and Kawakami, T. (2003) *Proc Natl Acad Sci U S A* 100, 9470-9475
- 86. Peluso, J., Pappalardo, A., Losel, R., and Wehling, M. (2005) *Biol Reprod* **73**, 261-270
- Rust, R., Visser, L., van der Leij, J., Harms, G., Blokzijl, T., Deloulme, J., van der Vlies, P., Kamps, W., Kok, K., Lim, M., Poppema, S., and van den Berg, A. (2005) *Br J Haematol* 131, 596-608
- Alpi, A., Langevin, F., Mosedale, G., Machida, Y., Dutta, A., and Patel, K. (2007) *Mol Cell Biol* 27, 8421-8430
- 89. Roffers-Agarwal, J., Xanthos, J., and Miller, J. (2005) BMC Cell Biol 6, 36
- 90. Krishnan, B., Jamry, I., and Chaplin, D. (1995) Genomics 30, 53-58
- Park, E., Han, J., Son, G., Lee, M., Chung, S., Park, S., Park, K., Lee, K., Choi, S., Seong, J., and Kim, K. (2006) *J Biol Chem* 281, 401-409
- 92. Kanehira, M., Harada, Y., Takata, R., Shuin, T., Miki, T., Fujioka, T., Nakamura, Y., and Katagiri, T. (2007) *Oncogene* **26**, 6448-6455
- 93. Wang, Y., Zhang, Y., Han, W., Li, D., Tian, L., Yin, C., and Ma, D. (2008) *Int J Biochem Cell Biol* **40**, 909-919
- 94. Iwaki, D., and Fujita, T. (2005) J Endotoxin Res 11, 47-50
- 95. Chung, E., Dews, M., Cozma, D., Yu, D., Wentzel, E., Chang, T., Schelter, J., Cleary, M., Mendell, J., and Thomas-Tikhonenko, A. (2008) *Cancer Biol Ther* **7**

- 96. Kusch, T., Florens, L., Macdonald, W., Swanson, S., Glaser, R., Yates, J. r., Abmayr, S., Washburn, M., and Workman, J. (2004) *Science* **306**, 2084-2087
- 97. Xu, J., Wu, H., Zhang, C., Cao, Y., Wang, L., Zeng, L., Ye, X., Wu, Q., Dai, J., Xie, Y., and Mao, Y. (2002) *J Hum Genet* **47**, 681-683
- Schád, E., Farkas, A., Jékely, G., Tompa, P., and Friedrich, P. (2002) *Biochem J* 362, 383-388
- 99. Gerhard, D., Wagner, L., Feingold, E., Shenmen, C., Grouse, L., Schuler, G., Klein, S., Old, S., Rasooly, R., Good, P., Guyer, M., Peck, A., Derge, J., Lipman, D., Collins, F., Jang, W., Sherry, S., Feolo, M., Misquitta, L., Lee, E., Rotmistrovsky, K., Greenhut, S., Schaefer, C., Buetow, K., Bonner, T., Haussler, D., Kent, J., Kiekhaus, M., Furey, T., Brent, M., Prange, C., Schreiber, K., Shapiro, N., Bhat, N., Hopkins, R., Hsie, F., Driscoll, T., Soares, M., Casavant, T., Scheetz, T., Brown-stein, M., Usdin, T., Toshiyuki, S., Carninci, P., Piao, Y., Dudekula, D., Ko, M., Kawakami, K., Suzuki, Y., Sugano, S., Gruber, C., Smith, M., Simmons, B., Moore, T., Waterman, R., Johnson, S., Ruan, Y., Wei, C., Mathavan, S., Gunaratne, P., Wu, J., Garcia, A., Hulyk, S., Fuh, E., Yuan, Y., Sneed, A., Kowis, C., Hodgson, A., Muzny, D., McPherson, J., Gibbs, R., Fahey, J., Helton, E., Ketteman, M., Madan, A., Rodrigues, S., Sanchez, A., Whiting, M., Madari, A., Young, A., Wetherby, K., Granite, S., Kwong, P., Brinkley, C., Pearson, R., Bouffard, G., Blakesly, R., Green, E., Dickson, M., Rodriguez, A., Grimwood, J., Schmutz, J., Myers, R., Butterfield, Y., Griffith, M., Griffith, O., Krzywinski, M., Liao, N., Morin, R., Morrin, R., Palmquist, D., Petrescu, A., Skalska, U., Smailus, D., Stott, J., Schnerch, A., Schein, J., Jones, S., Holt, R., Baross, A., Marra, M., Clifton, S., Makowski, K., Bosak, S., and Malek, J. (2004) Genome Res 14, 2121-2127
- 100. Solovyan, V., Bezvenyuk, Z., Salminen, A., Austin, C., and Courtney, M. (2002) *J Biol Chem* **277**, 21458-21467
- 101. Tamai, S., Iida, H., Yokota, S., Sayano, T., Kiguchiya, S., Ishihara, N., Hayashi, J., Mihara, K., and Oka, T. (2008) *J Cell Sci* **121**, 2588-2600
- 102. Lim, C., Cater, M., Mercer, J., and La Fontaine, S. (2006) *J Biol Chem* 281, 14006-14014
- 103. Suzuki, T., Terasaki, M., Takemoto-Hori, C., Hanada, T., Ueda, T., Wada, A., and Watanabe, K. (2001) *J Biol Chem* **276**, 33181-33195
- 104. Maeda, Y., Tsuji, K., Nifuji, A., and Noda, M. (2004) J Cell Biochem 93, 337-344
- 105. Kawagoe, H., Kandilci, A., Kranenburg, T., and Grosveld, G. (2007) *Cancer Res* 67, 10677-10685
- 106. Kang, J., Albadawi, H., Patel, V., Abbruzzese, T., Yoo, J., Austen, W. J., and Watkins, M. (2008) J Vasc Surg 48, 701-708
- Feldmann, H., Aigle, M., Aljinovic, G., André, B., Baclet, M., Barthe, C., Baur, A., Bécam, A., Biteau, N., and Boles, E. (1994) *EMBO J* 13, 5795-5809
- 108. Ripperger, J., and Schibler, U. (2006) Nat Genet 38, 369-374
- 109. Nishida, H., Suzuki, T., Tomaru, Y., and Hayashizaki, Y. (2005) *BMC Genet* 6, 10
- 110. Marzluff, W., Gongidi, P., Woods, K., Jin, J., and Maltais, L. (2002) *Genomics* **80**, 487-498

- 111. Fan, Y., Nikitina, T., Morin-Kensicki, E., Zhao, J., Magnuson, T., Woodcock, C., and Skoultchi, A. (2003) *Mol Cell Biol* 23, 4559-4572
- 112. Galvani, A., Courbeyrette, R., Agez, M., Ochsenbein, F., Mann, C., and Thuret, J. (2008) *Mol Cell Biol* **28**, 3672-3685