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Web-based Supplementary Materials for " Using the Optimal Robust Receiver Operating 

Characteristic (ROC) Curve for Predictive Genetic Tests"  by Qing Lu, Nancy 

Obuchowski, Sungho Won, Xiaofeng Zhu, and Robert C. Elston 

 

Web Appendix A: Forming the True Optimal ROC Curve 

Suppose we are interested in combining data on p disease loci for disease prediction. Let the j-th 

( 1, , )j p= L disease locus have jm  genotypes, and let 1( , , )
jj j jmR r r= L  and 

1( , , )
jj j jmF f f= L denote the corresponding relative risks and genotype frequencies for these jm  

genotypes. We can then calculate the conditional probability given disease of the jk th 

( 1, ,j jk m= L ) monogenic genotype at the j-th locus as 
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Then by applying equations (2) – (4) in section 3.1, we form the true optimal ROC curve and 

calculate its AUC. 

What we described in the text was based on the p disease loci exhibiting no interaction. If 

some of the p loci interact, the method can be easily extended to handle such a situation. Without 

loss of generality, we consider two loci, j  and 'j , that interact with each other. The joint 

probabilities of the two-locus genotypes can be calculated from the single locus genotype 

frequencies, on assuming linkage equilibrium, as
' '' '( ) ( , )

j j j jl jk j k jk j kP G P g g f f= = ⋅ .  If the two 

loci are in linkage disequilibrium, we can obtain the joint probabilities of the genotypes from the 

haplotype frequencies. Then, given the underlying interaction model, we cluster together the 

two-locus genotypes that share the same risk of disease when estimating the cluster frequencies. 

For instance, if the underlying interaction model is the threshold model (Marchini, Donnelly, and 
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Cardon, 2005), we would cluster all possible two-locus genotypes into two groups: (1)  a single 

high risk group, which we denote H , for all individuals having at least one of the disease-

susceptibility alleles at each of the two loci, with frequency ( )
l

H l
G H

f P G
∈

= ∑ ; and  (2) a common 

low risk group,  which we denote C , for all other individuals, with frequency ( )
l

C l
G C

f P G
∈

= ∑ . 

Let /H Cr  denote the risk of the high risk group relative to that of the low risk group. By treating 

these interacting loci as comprising one set of genotypes and applying equations (2) – (4), we 

can also incorporate interacting loci with this approach.  

 

Web Appendix B: A Simple Example Illustrating the Method Described in Section 3.2 

Suppose we have two disease susceptibility loci, A and B , that were found to be significantly 

associated with disease in previous association studies. We wish to investigate their potential role 

in disease prediction. Assuming each locus has three genotypes (i.e., genotypes A A , A A  and 

A A  for locus A ,  and B B , B B  and B B  for locus B ), from which we could have nine 

possible multi-locus genotypes, we estimate the likelihood ratios (LRs) for each of the nine 

multi-locus genotype using the entire dataset. We then rank the nine multi-locus genotypes in 

descending order of their LRs, from the highest rank to the lowest rank and plot the optimal ROC 

curve. This represents the full model with the largest number of multi-locus genotype clusters 

(each comprising one genotype). To reduce the model complexity, we adopt the backward 

clustering algorithm to gradually combine the multi-locus genotype clusters with each other. In 

the first step of the backward clustering process, we consider the following six possibilities 

(models) to combine pairs of multi-locus genotypes based on two particular one-locus genotypes: 

i. A A A A+   

ii. A A A A+   
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iii. A A A A+   

iv. B B B B+  

v. B B B B+   

vi. B B B B+   

Note that each of these six possible clusterings results in six clusters. For each one of them, we 

rank the six clusters by their LRs, and form the corresponding optimal ROC curve using the 

entire dataset. The candidate model at this step is chosen from the above six models based on 

having the highest AUC value. Note that because the models ii. and v. are not normally 

considered biologically plausible, we might exclude them from the algorithm, and only consider 

the remaining four models. Assuming model i. is chosen as the candidate model, i.e. we have 

pooled together the AA and A A  multi-locus genotypes, we consider the following four models in 

the next step: 

i. A A A A A A+ +  

ii. B B B B+  

iii. B B B B+   

iv. B B B B+  

Using the same strategy, we can choose the candidate model for step two. Here we might also 

exclude model iv. because it is not biologically plausible. If model i is chosen, then locus A is 

dropped from consideration. We repeat the clustering process until all multi-locus genotypes fall 

into one group at step T (in this example T = 4).  By repeating the clustering process, we obtain 

as a maximumT + 1  candidate models, (0) (1) ( ), , , TG G GL , with respectively nine, six, 

three(four), two, and one multi-locus genotype clusters. We use the number of multi-locus 
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genotype clusters to measure the model’s complexity, and conduct ten-fold cross validation to 

choose the most parsimonious model with an appropriate model complexity. 

In ten-fold cross validation, we randomly partition the entire dataset into ten subsets. Nine 

subsets are used for the purpose of training and one subset is used for the purpose of validation. 

We repeat the backward clustering algorithm described above in each of the ten training datasets 

to obtain candidate models and in each case calculate the prediction AUC in the corresponding 

validation dataset, the latter being averaged over the ten values.  Letting ( )mnc denoted the 

number of multi-locus genotype clusters with a maximum average prediction AUC in the cross 

validation, the corresponding candidate model ( )mG  with ( )mnc  multi-locus genotype clusters is 

chosen as the most parsimonious model. Based on the selected model, we estimate the fitted 

AUC value using the entire dataset. In order to obtain the prediction AUC, an independent 

dataset is required. 

For a dataset with a smaller sample size and a large number of disease susceptibility loci, 

occasionally in the cross validation process some of the multi-locus genotypes might only be 

present in the validation dataset and not in the training dataset. Assume, for example, { A A B B } 

is only presents in the validation dataset, so that we are unable to infer where to place { A A B B } 

from any model built in the training dataset. Instead of treating it as missing, we adopt the same 

strategy of gradually clustering the multi-locus genotypes until, after a few steps, { A A B B } 

and { A A B B } are clustered together in the training dataset. Because the statistic (e.g., the LR) 

associated with the cluster {   +   A A B B A A B B } is the same as for { B B }, we can remove 

locus A and use { B B } to represent {  +   A A B B A A B B } in the training dataset. We apply 

this process to the validation dataset, and use the LR of { B B } estimated from the training 

dataset to infer the order of { A A B B } in the validation dataset. 
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The backward clustering algorithm applies naturally to both disease and marker selection. 

For instance, if the chosen model is i. in step one, this would imply that SNP A follow a model 

in which A is dominant and A is recessive. In another case, as noted above, if the final chosen is 

i. in step two, this would imply that SNP A is a noise locus and it is removed by the algorithm. 

 

Web Appendix C: Simulation III 

We simulated three independent diallelic SNP loci with the disease susceptibility allele 

frequencies 0.4, 0.3 and 0.2, respectively. We assumed that the disease prevalence ρ  is equal to 

0.05 and at each locus the rarer allele follows a recessive model with respective relative risks 4, 3 

and 2. Sampling 1000 cases and 1000 controls from the simulated population data, we 

investigated the logistic regression model, the classification tree and the optimal robust ROC 

curve method described in section 3.2.  Among all approaches, the logistic regression that 

assumed a recessive model (i.e., the right mode of inheritance) gave the most accurate AUC 

estimates and the logistic regression that assumed a dominant model seriously underestimated 

the AUC values. The optimal robust ROC curve performs better than the logistic regression 

model that assumes a multiplicative model in terms of MSE (Web Table 1).  
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TABLES AND FIGURES 
 

Web Table 1. AUC estimates and standard deviation (SD) of the unordered optimal (UNORD) 

and jagged ordered optimal (JAGGED) methods (Baker, 2000), based on 1000 repeated split 

samples from the Wellcome Trust dataset.  

 Training Dataset Validation Dataset 
 AUC SD AUC SD 

UNORD 0.7639 0.0045  0.7153 0.0095  
JAGGED 0.7618 0.0046 0.7171 0.0095  

 

Web Table 2. Comparison among of AUC obtained by the optimal robust ROC curve method 

(OPT-ROC), logistic regression with backward selection (Mul LOG-REG, Dom LOG-REG, and 

Rec LOG-REG), and classification tree (CLA-TREE)  

1000:1000 Cases:Controls 
BIAS SD MSE 

OPT-ROC 0.0074 0.0133 0.00023 
Mul LOG-REG -0.0144 0.0126 0.00037 
Dom LOG-REG -0.1024 0.0129 0.01065 
Rec LOG-REG 0.0005 0.0104 0.00011 

CLA-TREE -0.0116 0.0104 0.00024 
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Web Figure 1. ROC curves, obtained using the multiplicative logistic regression model, from 

100 repeated split samples. The left panel shows the ROC curves estimated from the training 

dataset and the right panel shows the ROC curves estimated from the validation dataset. 
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