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Derivation of the rate-based model of Hodgkin–Huxley neurons with αβ synapses 

The  conductance-based  Hodgkin–Huxley  neuron  model  [1,  2]  has  become  an  essential 
instrument in computational neuroscience that allowed to simulate the time course of the 
membrane potential in response to stimulation, at arbitrary resolution. In larger-scale experi-
ments, especially where the timescale of studied phenomena is much greater than the dur-
ation  of  a  single  spiking  event,  the  precise  form of  the  spike  is  of  secondary  concern. 
Instead, it proved to be convenient to represent the state of a neuron in terms of instant-
aneous spiking rate rather than its membrane potential.

In  this  section,  following the analysis  done by Nowotny & Rabinovich [3] for the Rall 
synapse [4], we set out to develop a rate-based representation of the Hodgkin–Huxley model 
specifically as used with the αβ-synapses.

The standard Hodgkin–Huxley model

In  the  general  formulation,  the  classical  Hodgkin–Huxley  neuron  model  expresses  the 
instantaneous rate of change of the membrane potential  E as a dependency of its specific 
capacitance C and the total current passing through the membrane:

where individual currents  Ii include the sodium and potassium currents  INa and  IK, a leak 
current  Il, the external current (such as that resulting from a neuromediator release at its 
dendrites) Iext. The leak current is defined as Il = gl(E – El), with a certain constant, voltage-
independent leak conductance gl. The currents INa and IK are voltage-dependent, thus: 

with  each gating  parameter  p= m,  n or  h in  (eq 5)  defined by a  first-order  differential 
equation of the form:

with these empirically found dependencies:
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In our study, we assumed C = 0.143 µF/cm2,  gl = 0.0267 mS/cm2,  El = –63.563 mV, gNa = 
7.15 mS/cm2, ENa = 50 mV, gK = 1.43 mS/cm2, and EK = –95 mV.

The αβ synapse 

The  αβ synapse [5,6],  as  opposed to  the  synapse described by Rall  [4],  which has two 
separate  equations  for  neurotransmitter  release  and binding,  only models  the  amount  of 
neurotransmitter acting on receptors of the post-synaptic membrane. The rate of change of 
active transmitter is governed by

where  α and  β are  the  rise  and decay rates,  respectively;  the  fixed parameter  trel is  the 
neurotransmitter  release  time,  and  tspike is  the  time of  the  last  spike  in  the  pre-synaptic 
neuron. A synaptic current,
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Figure S1: A Hodgkin–Huxley neuron (membrane potential E shown as solid line) starts continually spiking 
when injected a DC of 0.07 nA. Neurotransmitter release S at its axon is shown as the dotted line. The 
synapse is modelled with α = (20ms)–1 and β = (50ms)–1.



 

where Epre is the membrane potential of the neuron synapsed onto, and Esyn, the synapse rev-
ersal potential, is added to the sum of intrinsic currents of the post-synaptic neuron (eq. 4).

Figure S1 shows a Hodgkin–Huxley neuron which is caused to spike continually by a con-
stant current injection, along with the changes in the amount of neurotransmitter released in 
its axon.

The rate-based model

In response to a constant input current IDC, the HH neuron will spike tonically with a rate F 
that is a function of  IDC. The  F(I) curve for the HH neuron (fig. S2) can be fitted by an 
equation of the form 

where the empirically chosen parameters I0 = 0.0439 nA, a = 0.185 and r = 0.564 [49].

Assuming that the time scale of a spike is much faster than the synaptic time scale, we can 
replace the presynaptic membrane potential Epre in eq. 9 by a constant resting potential such 
that  Isyn depends linearly on the amount of neurotransmitter  S released for any given pre-
synaptic frequency F. If we now determine S(F), the conversion to a rate-based represent-
ation is complete.

The case of non-bounded increase of S

Let us consider a simpler case of eq. 8 (fig. S3) in which the rising part is independent of the 
current value of S (denoting release time as T):
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Figure S2: Firing rate F of a Hodgkin–Huxley neuron plotted as a function of its input current I (dots) and its 
empirical approximation given by eq. 10 (line).



which we now want to reduce to a single-equation form dS/dt = –βS + γ.

Let t0 be a time where spike occurs and t1 = t0 + 1/F, and assume 1/F > T (fig. S3). Solving 
the differential equation for the rising part in (eq. 11) yields

 

And, for the decay part,

Remembering that S(t1) can be reached in a single step via a similar function with γ, we can, 
after bringing the solution of dS/dt = –βS + γ for S(t) to the form similar to eq. 12, equate

Removing the common term S(t0)e–β/F from (eqs 13 and 14) produces

4

Figure S3: The course of the active transmitter concentration S as it stabilizes over time in response to tonic 
presynaptic spiking.



 simplifying the left-hand side of which and solving for γ we get

A list of all relevant parameters and variables used in the text is given in table S1.

Table S1. Parameters of the model and other relevant symbols used in the text, with descriptions.

Parameter Description Value
Olfactory receptor neurons (ORNs)
λa Firing rate of the ORNs of the first component 10 ... 200 Hz, in discrete 

increments per Cj (q.v.)
λb Firing rate of the ORNs of the second component 10 ... 200 Hz
Local neurons (LN) and Projection neurons (PN)
C Membrane capacitance 0.143 µF/cm2

gl Leak conductance 0.0267 mS/cm2

El Leak reversal potential –63.563 mV
gNa Maximal sodium conductance 7.15 mS/cm2

ENa Sodium reversal potential 50 mV
gK Maximal potassium conductance 1.43 mS/cm2

EK Potassium reversal potential –95 mV
LN Synapses
gORN-LNsp Conductance on the ORN-LNsp connection See table 2
gORN-LNgen Strength of the ORN-LNgen connection “-“
gLNi Strength of the LNgen-LNsp connections “-“
gLNt Strength of the inter-LNsp connections “-“
gLNo Strength of the LNsp-LNgen connections “-“
trelease Duration of transmitter release 5ms
Esyn Reversal potential 0mV
Epre Presynaptic threshold potential –20mV
α Rate of transmitter activation (20ms)-–1

 Adjusted rate of transmitter activation for linearized 
synapse equations

(27.79ms)–1

β Rate of transmitter removal from the synaptic cleft (50ms)-–1

Target cost function profile
Cij. Multiplier for component concentration at jth step (for 

the cost function formula, see legend to fig. 2)
2 × 1.3i, j= 0 … 9

b Steepness of the target profile crest 1.25
a Height of the target profile crest 18
c Part of the crest submersed below 0 0.3
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