Supplement:

#### Methods

# Cultivation of *T. elongatus* WT strain and preparation / solubilization of thylakoid membranes

*T. elongatus* WT strain was grown in BG-11 medium (Rippka et al. 1979) at 45°C under illumination of increasing intensity of 50-200 µmol of photons m<sup>-2</sup> s<sup>-1</sup> in a 20L foil fermenter at 5 % CO<sub>2</sub> and then transferred to air level CO<sub>2</sub>. The culture was harvested and the thylakoid membranes were prepared as described in (Kuhl et al. 2000). The thylakoid membranes were suspended in solubilisation buffer (20 mM MES pH 6.0; 25 mM MgCl<sub>2</sub>; 1 % (w/v) β-DM; 1 mM TLCK; 1 mM Pefabloc; 5 mM Na-ascorbate) at a final chlorophyll concentration of 1 mg/ml and incubated for 45 min at 20°C and gentle agitation. An equal volume of dilution buffer (20 mM MES pH 6.0; 1 mM TLCK; 1 mM Pefabloc; 5 mM Na-ascorbate) was added, to get a final concentration of 0.5 % β-DM. Insoluble material was removed by centrifugation at 45.000 g.

#### Purification of NDH-1L by liquid chromatography

The NDH-1L-complex was purified by Ni<sup>2+</sup> affinity chromatography, followed by size exclusion chromatography. The solubilized thylakoids were filtered through a 0.45 µm membrane and then applied to a chelating sepharose fast flow column (GE healthcare, 7.854 ml) with a flow rate of 1 ml/min, previously saturated with 0.1 M NiSO<sub>4</sub> and equilibrated with equilibration buffer (20 mM MES pH 6.0; 0.5 M Mannitol; 0.03 % (w/v)  $\beta$ -DM; 150 mM NaCl; 5 mM Na-ascorbate). The column was washed with equilibration buffer containing 5 mM histidine and the proteins were eluted with a 10-100 mM histidine gradient in equilibration buffer. After concentration of the fractions containing the complex (Amicon concentrator, 15 ml, CutOff 100 kDa), the sample was applied to a Superose 6 size exclusion chromatography column (GE healthcare), previously equilibrated with SEC-buffer (20 mM MES pH 6.0; 0.5 M Mannitol; 0.03 % (w/v)  $\beta$ -DM; 150 mM NaCl; 5 mM Na-ascorbate). After isocratic elution with a flow rate of 0.15 ml/min and a following concentration step, the purified samples were stored at -80 °C.

#### Electrophoresis

5 µg of purified proteins were loaded on a polyacrylamide gradient BN-Gel (3.5 - 16 %) in a Mini Protean 3 electrophoresis unit (BioRad). The electrophoresis was run as described in (Battchikova et al. 2005). Afterwards, the BN-gel lane was cut out, incubated and loaded on to a 14 % SDS-PAGE Gel with 6 M Urea. The proteins were visualized by silver staining (Blum et al. 1987).

## Mass spectrometry analysis of intact proteins

The masses of intact small proteins of the NDH-1 complex were determined by MALDI-ToF mass spectrometry according to (EI-Mohsnawy et al. 2010).

The masses of the polypeptides of NDH-1 complex from the Cramer laboratory were measured by liquid chromatography with electrospray-ionization mass spectrometry according to (Whitelegge 2002).

#### Sample preparation for protein identification via 1D-nLC-ESI-MS/MS

Analysis of 2D-gel spots: Excised protein spots from 2D-Gels were destained and the corresponding proteins were digested *in-gel* with trypsin and/or chymotrypsin (Shevchenko et al. 1996).

Analysis of isolated NDH-1 complexes in solution: The concentrated sample was diluted with 60% methanol, 40% 25 mm ammonium bicarbonate buffer and trypsin and/or chymotrypsin (each 1:100, w/w) were added to the sample. The proteolysis was performed overnight at 37 °C.

## Protein identification via 1D-nLC-ESI-MS/MS

After desalting by ZipTips (Millipore) the samples were resuspended in buffer A (0.1 % formic acid in water) and subjected to 1D-nLC-ESI-MS/MS using an autosampler. An UPLC BEH C<sub>18</sub> column (1.7  $\mu$ m, 75  $\mu$ m x 150 mm, Waters, Milford, MA, USA) and an UPLC Symmetry C<sub>18</sub> trapping column (5  $\mu$ m, 180  $\mu$ m x 20 mm, Waters, Milford, MA, USA) for LC as well as a PicoTip Emitter (SilicaTip, 30  $\mu$ m, New Objective, Woburn, MA, USA) were used in combination with the nanoACQUITY gradient UPLC pump system (Waters, Milford, MA, USA) coupled to an LTQ Orbitrap mass spectrometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). The analytical column oven was set to 45 °C. For elution of the peptides a multiple step gradient of buffer A to buffer B (0.1 % formic acid in acetonitrile) was applied (0-5 min: 1 %

buffer B; 5-10 min: 5 % buffer B; 10-175 min: 40 % buffer B; 175-200 min: 99 % buffer B; 200-210 min: 1 % buffer B) at a flow rate of 0.4  $\mu$ L/min and a spray voltage of 1.5-1.8 kV. The LTQ Orbitrap was operated by instrument method files of Xcalibur (Rev. 2.0.7). The linear ion trap and orbitrap were operated in parallel, i.e. during a full MS scan on the orbitrap in the range of 300-2000 m/z at a resolution of 60,000. MS/MS spectra of the four most intense precursors were detected in the ion trap. The heated desolvation capillary was set to 200 °C. The relative collision energy for collision-induced dissociation was set to 35 %. Dynamic exclusion was enabled with a repeat count of one and a one-minute exclusion duration window. Singly charged and more than triply charged ions were rejected from MS/MS.

#### **SEQUEST Analysis**

The SEQUEST algorithm was used for MS/MS data interpretation. To obtain reliable protein identification, only peptides with a  $\Delta$ Cn score above 0.1 were used. In addition the cross-correlation scores of double and triple charged peptides had to be greater than 2.5 and 3.5, respectively. As modifications the oxidation of methionine was permitted.

| NDH-1 SU | ORF <sup>a</sup> | kDa⁵   | TMH℃ | $XC^d$ | Coverage (%) <sup>e</sup> |
|----------|------------------|--------|------|--------|---------------------------|
| NdhF1    | tll0720          | 71.972 | 16   | 30.1   | 1.37                      |
| NdhH     | tlr1288          | 45.216 |      | 120.3  | 33.76                     |
| NdhD1    | tll0719          | 56.078 | 12   | 68.3   | 9.92                      |
| NdhB     | tll0045          | 55.144 | 14   | 30.2   | 6.6                       |
| NdhA     | tlr0667          | 41.347 | 13   | 60.2   | 16.09                     |
| NdhK     | tlr0705          | 25.742 |      | 70.2   | 24.47                     |
| Ndhl     | tlr0668          | 22.415 |      | 40.2   | 20.41                     |
| NdhG     | tlr0669          | 21.569 | 5    | 30.3   | 13.00                     |
| NdhJ     | tlr1430          | 19.343 |      | 10.2   | 8.33                      |
| NdhN     | tlr1130          | 16.636 |      | 10.1   | 7.33                      |
| NdhM     | tll0447          | 12.567 |      | 40.3   | 45.05                     |
| NdhO     | tsl0017          | 7.867  |      | 10.2   | 18.57                     |

Table S1: NDH-1 subunit analysis after *in-gel* digestion with trypsin

<sup>a</sup> Cyanobase ORF ID.

<sup>b</sup> Calculated molecular weight.

<sup>c</sup> Number of predicted transmembrane helices.

<sup>d</sup> XC score:  $((\Delta Cn^2)+Sp) \cdot Xcorr$ 

<sup>e</sup> Protein coverage given by percentage of identified amino acids.

| NDH-1 SU | ORF <sup>a</sup> | kDa⁵   | TMH℃ | $XC^d$ | Coverage (%) <sup>e</sup> |
|----------|------------------|--------|------|--------|---------------------------|
| NdhA     | tlr0667          | 41.347 | 13   | 50.3   | 15.04                     |
| NdhB     | tll0045          | 55.144 | 14   | 40.2   | 12.43                     |
| NdhC     | tlr1429          | 15.003 | 3    | 10.3   | 15.91                     |
| NdhD1    | tll0719          | 56.078 | 12   | 50.2   | 17.32                     |
| NdhE*    | tlr0670          | 11.133 | 3    | 10.3   | 28.71                     |
| NdhF1    | tll0720          | 71.972 | 16   | 40.3   | 9.76                      |
| NdhG     | tlr0669          | 21.569 | 5    | 40.3   | 21.50                     |
| NdhH     | tlr1288          | 45.216 |      | 110.3  | 34.01                     |
| Ndhl     | tlr0668          | 22.415 |      | 90.3   | 45.41                     |
| NdhJ     | tlr1430          | 19.343 |      | 40.2   | 32.14                     |
| NdhK     | tlr0705          | 25.742 |      | 50.2   | 21.52                     |
| NdhL     | tsr0706          | 8.571  | 2    | 10.1   | 11.84                     |
| NdhM     | tll0447          | 12.567 |      | 60.2   | 40.54                     |
| NdhN     | tlr1130          | 16.636 |      | 50.3   | 46.00                     |
| NdhO     | tsl0017          | 7.867  |      | 20.2   | 35.71                     |

Table S2: NDH-1 subunit analysis after digestion with trypsin in solution

<sup>a</sup> Cyanobase ORF ID.
<sup>b</sup> Calculated molecular weight.
<sup>c</sup> Number of predicted transmembrane helices.
<sup>d</sup> XC score: ((ΔCn<sup>2</sup>)+Sp) • Xcorr
<sup>e</sup> Protein coverage given by percentage of identified amino acids.

\* Identified after cleavage with trypsin and chymotrypsin.

| Table S3: Identification | of NdhP and | NdhQ by s | pecific pe | ptides |
|--------------------------|-------------|-----------|------------|--------|
|--------------------------|-------------|-----------|------------|--------|

|                   | MH+ <sup>a</sup> | ∆M (ppm) <sup>b</sup> | P <sup>c</sup>      | z <sup>d</sup> | Xcorr <sup>e</sup> | ∆Cn <sup>f</sup> | Coverage <sup>g</sup> (%) |
|-------------------|------------------|-----------------------|---------------------|----------------|--------------------|------------------|---------------------------|
| NdhP <sup>h</sup> | 1782.710         | 4.8                   | 2.3e <sup>-11</sup> | 2              | 5.145              | -                | 36.36                     |
| NdhQ <sup>i</sup> | 1299.651         | 0.9                   | 5.3e⁻⁵              | 2              | 2.744              | 0.575            | 24.44                     |

<sup>a</sup> Measured masses of the precursor ion. <sup>b</sup> Mass difference of calculated and measured masses in ppm. <sup>c</sup> Peptide probability calculated by the Bioworks software.

<sup>d</sup> Charge of the peptide.

<sup>a</sup> Charge of the peptide.
<sup>e</sup> Cross-correlation score calculated by the sequest algorithm.
<sup>f</sup> ΔCn value calculated by the sequest algorithm.
<sup>g</sup> Protein coverage given by percentage of identified amino acids.
<sup>h</sup> After digestion with trypsin.
<sup>i</sup> After digestion with chymotrypsin.

|      | Calculated        | Measured.average  | ∆M (Da) <sup>c</sup> | TMH <sup>d</sup> | Modification <sup>e</sup> |
|------|-------------------|-------------------|----------------------|------------------|---------------------------|
|      | average           | mass <sup>b</sup> |                      |                  |                           |
|      | mass <sup>a</sup> |                   |                      |                  |                           |
| NdhP | 4902.67           | 4902.65           | 0.02                 | 1                | N-Formyl                  |
|      |                   |                   |                      |                  |                           |
| NdhQ | 4710.53           | 4710.52           | 0.01                 | 1                | Minus Met-1               |
|      |                   |                   |                      |                  |                           |

## Table S4: Masses of intact NdhP and NdhQ

<sup>a</sup> Calculated average masses (MH+).

<sup>b</sup> Measured average masses (MH+).

<sup>c</sup> Mass difference of calculated and measured masses.

<sup>d</sup> Number of predicted transmembrane helices.

<sup>e</sup> Predicted common modifications based on the measured masses.

Gene and translated amino acid sequences of the novel NDH-1 subunits

ndhP

Sequence:

ATGGATGCTGTGATTAGCGTAAAGCCCATTTTGCTGGCTATGACGCCTGTATTTA TTCTGTTGTGTTTGTTTTTTGGCACCCGCAATGGCTTCTACGACACGGATCAATA CCACGGTAACGGTTCTGCCCAC

Genomic region: 1189596-1189465

Translated amino acid sequence:

MDAVISVKPILLAMTPVFILLCLFFGTRNGFYDTDQYHGNGSAH

#### ndhQ

Sequence:

ATGGCCACGGATTTTAATCGCGGCATTATGAAGTTTGATGGTGCCGACAGCCCG GCGATGATTGCGATTTCTGCGGTCTTGATTCTTGGCTTTATTGCAGGACTGATTT GGTGGGCACTCCACACCGCTTACGCC Genomic region: 105314-105448

Translated amino acid sequence: MATDFNRGIMKFDGADSPAMIAISAVLILGFIAGLIWWALHTAYA

#### Figure S1



Position of the *ndhP* and *ndhQ* genes within the genome of *T. elongatus*. Open reading frames were predicted with Glimmer (http://bioinformatics.biol.rug.nl/websoftware/orf/orf\_start.php) and included into the genome of *T. elongatus* as annotated in Cyanobase (http://genome.kazusa.or.jp/cyanobase).





Result of MALDI-ToF mass spectrometry of intact NDH-1 complexes. Samples ware analyzed in the low molecular mass range according to (EI-Mohsnawy et al. 2010) and the measured masses were assigned to small NDH-1 subunits with respect to common posttranslational modifications.



<u>NdhP</u>



Prediction of transmembrane helices for NdhP and NdhQ. The translated amino acid sequences of *ndhP* and *ndhQ* were used to predict transmembrane helices with TMHMM (http://www.cbs.dtu.dk/services/TMHMM/). The red bar indicates the position of the TMH within the sequence.

# Figure S4

# <u>NdhP</u>

|                             | 10                                                       | 20                                                                                                              | 30                                                             | 40                      | 50                             |
|-----------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------|--------------------------------|
| NdhP T_elongatus/1-44       | · · · · · · · · · · MDAVISVK                             | PILLAM                                                                                                          | PVFILLCLFFG                                                    | RNGFYDTDQ               | YH <mark>GNGSAH</mark>         |
| tr B8HVZ5 B8HVZ5_CYAP4/1-40 |                                                          | LILVCM                                                                                                          | PVFILLCLLFG                                                    | KNGFYDTDN               | YH <mark>GNGSAH</mark>         |
| tr B0C803 B0C803_ACAM1/1-40 | MDLK                                                     | TILV <mark>G</mark> L <mark>T</mark>                                                                            | PIFIVLCLFF <mark>G</mark> 1                                    | KNGFYDSDD               | YH <mark>GNGSAH</mark> · · · · |
| tr Q0QM02 Q0QM02_FREDI/1-40 |                                                          | (LILV <mark>g</mark> l <mark>t</mark>                                                                           | VIFTVLCLFFGT                                                   | KNGFYDSDN               | YH <mark>GNGSAH</mark>         |
| tr B3DFB3 B3DFB3_MICAN/1-40 | · · · · · · · · · · · · · · · · M <mark>D</mark> I K     | LILLAL                                                                                                          | AVF <mark>T</mark> V <mark>S</mark> CLFF <mark>G</mark> 1      | RNGFYDSDN               | YD <mark>GNGSAH</mark>         |
| tr B1XNQ7 B1XNQ7_SYNP2/1-47 | · · · · · · MYSY <mark>P</mark> N <mark>PMD</mark> IK    | (LLLLAL <mark>T</mark>                                                                                          | G V F T V A C L F F G T                                        | QNGFYDSDD               | YH <mark>GNGSAH</mark>         |
| tr D7E4C2 D7E4C2_NOSA0/1-40 |                                                          | (LILV <mark>g</mark> l <mark>t</mark>                                                                           | VIFTFTCLFFG1                                                   | KNGFYDSDN               | YH <mark>GNGSAH</mark>         |
| tr B7K8C9 B7K8C9_CYAP7/1-49 | ····MFN <mark>GG</mark> VISI <mark>MD</mark> AK          | (LVML <u>I</u> L <mark>T</mark>                                                                                 | GLFIVSCLFFG1                                                   | KNGFYDSDN               | YH <mark>GNGSAH</mark> · · · · |
| tr Q10WS7 Q10WS7_TR/E//1-40 | <mark>MD</mark> VK                                       | (LILV <mark>g</mark> l <mark>t</mark>                                                                           | F L F <mark>T</mark> I <mark>G</mark> C L F F <mark>G</mark> 1 | <mark>QNGFYDTD</mark> D | YH <mark>GNGSAH</mark> · · · · |
| tr E0U6P3 E0U6P3_9CHRO/1-40 | <mark>MD</mark> AK                                       | CIVMIIL <mark>T</mark>                                                                                          | G L F I I <mark>S</mark> C L F F <mark>G</mark> 1              | KNGFYDSDN               | YH <mark>GNGSAH</mark> · · · · |
| tr C7QSH4 C7QSH4_CYAP0/1-40 | <mark>MD</mark> VK                                       | (LILVIL <mark>T</mark>                                                                                          | G L F I I <mark>S</mark> C L F F <mark>G</mark> 1              | KNGFYDSDN               | YD <mark>GNGSAH</mark> ····    |
| tr B7JYA3 B7JYA3_CYAP8/1-40 | <mark>MD</mark> V K                                      | (LILV <u>I</u> L <mark>T</mark>                                                                                 | GLF <u>I</u> I <mark>S</mark> CLFF <mark>G</mark> 1            | KNGFYDSDN               | YD <mark>GNGSAH</mark> ····    |
| tr D4ZT45 D4ZT45_SPIPL/1-40 | <mark>MD</mark> I K                                      | (LILV <mark>G</mark> L <mark>S</mark>                                                                           | VVF <mark>SIA</mark> CIFF <mark>G</mark> 1                     | Q N G F Y D S D D       | YH <mark>GNGSAH</mark> · · · · |
| tr A3IP20 A3IP20_9CHRO/1-40 | <mark>MD</mark> V K                                      | (LILVIL <mark>T</mark>                                                                                          | ALF <mark>T</mark> V <mark>S</mark> CLFF <mark>G</mark> 1      | KNGFYDSDN               | YD <mark>GNGSAH</mark> · · · · |
| tr B1WX88 B1WX88_CYAA5/1-46 | MRRKSIMDV                                                | (LVLVIL <mark>T</mark>                                                                                          | ALF <mark>T</mark> V <mark>S</mark> CLFF <mark>G</mark> 1      | KNGFYDSDN               | YD <mark>GNGS</mark> AH        |
| tr Q7NEQ5 Q7NEQ5_GLOVI/1-39 |                                                          | (LVILV <mark>I</mark> A                                                                                         | IAF I PLALFFA                                                  | RNGFYNTDR               | YH <mark>GNGSAH</mark>         |
| tr Q3AMW7 Q3AMW7_SYNSC/1-48 | · · · · · MMDAATSSFNLG                                   | TVLLA <mark>S</mark> I                                                                                          | VLF <mark>P</mark> LACLFF <mark>G</mark> 1                     | RGGYYNTDQ               | YD <mark>GNGT</mark> AH        |
| tr D6PGP3 D6PGP3_9BACT/1-47 | · · · · · · MDAATSS <mark>F</mark> NLG                   | TVLLA <mark>S</mark> V                                                                                          | VLF <mark>P</mark> LACLFF <mark>G</mark> 1                     | RGGYYNTDQ               | YD <mark>GNGT</mark> AH        |
| tr B4WKT7 B4WKT7_9SYNE/1-40 | · · · · · · · · · · · · · · · · MD I K                   | (LVFFIL <mark>T</mark>                                                                                          | G L F S V A C L F F G 1                                        | RNGFYDSEN               | YH <mark>GNGSAH</mark>         |
| tr D3EP09 D3EP09_UCYNA/1-40 | · · · · · · · · · · · · · · · · MD   K                   |                                                                                                                 | TLF <mark>T</mark> VSCLFF <mark>G</mark> 1                     | KNGFYDSDD               | YK <mark>gngtah</mark>         |
| tr D0CL66 D0CL66_9SYNE/1-53 | MSSGQVMNAATSSFNLG                                        | TVLLA <mark>S</mark> I                                                                                          | VLF <mark>P</mark> LACLFF <mark>G</mark> 1                     | RGGYYNTDQ               | Y D G N G T A H · · · ·        |
| tr Q061C7 Q061C7_9SYNE/1-47 | · · · · · · MDAALSGFNLG                                  | TVLLA <mark>S</mark> I                                                                                          | VLF <mark>P</mark> LACLFF <mark>G</mark>                       | RGGYYNTDK               | Y D G N G T A H · · · ·        |
| tr Q31QG9 Q31QG9_SYNE7/1-46 | · · · · · · · · MRS <mark>P</mark> RT <mark>MDF</mark> K |                                                                                                                 | I PFTLATLYFG1                                                  | RNGFYDSDD               | Y H G N G T A H                |
| tr Q2JWH2 Q2JWH2_SYNJA/1-40 |                                                          | (LVLV <mark>G</mark> VA                                                                                         | LVL <mark>S</mark> LASF <b>Y</b> FG1                           | RNGFYDTDK               | YHG <mark>NGSAH</mark>         |
| tr Q3AUM5 Q3AUM5_SYNS9/1-47 | · · · · · · MEAALAGENLG                                  | TVLLA <mark>S</mark> I                                                                                          | VLF <mark>P</mark> LACLFF <mark>G</mark>                       | RGGYYNTDK               | Y D G N G T A H                |
| tr B4VXU8 B4VXU8_9CYAN/1-40 |                                                          |                                                                                                                 | ILFTVSALIFG                                                    | KNGFYDSDN               | YHGNGSAH · · · ·               |
| tr[A4CSW3[A4CSW3_SYNPV/1-47 | ····MDAALSGFNLG                                          | TVLLFGS                                                                                                         | GLEVLATLEEG                                                    | RGGYYNTDQ               | YDGNGTAH · · · ·               |
| tr[A5GiK1]A5GiK1_SYNPW/1-47 | ·····MDAALSGFNLG                                         | TVLLFGS                                                                                                         | GLEVLTILFEG                                                    | RGGYYNTDK               | YDGNGTAH                       |
| thA328M/[A328M/_9SYNE/1-47  | ···· MDAALHSFNLG                                         | TVLLFGS                                                                                                         | GLEVLILLYEG                                                    | RGGYYNTDQ               | YDGNGTAH                       |
| MA3YX61 A3YX61_9SYNE/1-47   | ·····MSNALSSFNLG                                         | TVLLAGS                                                                                                         | GLECLATLYEG                                                    | RGGYYDSDD               | YDGNGTAH                       |
| MBS/P25/BS/P25_9CHRO/1-45   | MESSOFILA                                                | TULEU                                                                                                           | GEF CLATEFF G                                                  | KUDEVECEN               | YVCDCCAUDVVD                   |
| MABG4L6JA8G4L6_PROM2/1-44   |                                                          |                                                                                                                 | C F V L L I V F F G I                                          | KNDFYESEN               | Y KODOCAHOVKR                  |
| 10000011000001_95111E/1-47  | MEAALSGENLG                                              |                                                                                                                 | UPEVIL TVEE                                                    | KUREYEREN               | YVODGCAHDVVD                   |
|                             |                                                          |                                                                                                                 |                                                                | PNGYYDTDK               | YOGDGCAHDVKR                   |
| ++0318431031843 PROM9/1-44  |                                                          |                                                                                                                 |                                                                | KNDEVEREN               | VKGDGCAHDVKR                   |
| +4A2BOX5IA2BOX5_PROMS/1-44  | MDL T                                                    | Т I I E I I S                                                                                                   |                                                                | KNDEVESEN               | YKGDGCAHDVKR                   |
| HOUDAOLOUDAO SVN S2/1-47    | MDAAL SGENLG                                             | TVLVEGS                                                                                                         | GLEVIATEVEGI                                                   | PGGYYNTDK               |                                |
| +1A3PCP8 A3PCP8 PROM0/1-44  | MDL T                                                    |                                                                                                                 | I PEVI I TVVEGI                                                | KNDEVESDN               | KGDGCAHDVKR                    |
| *148W/D6L48W/D6_PROMP/1-44  |                                                          | VVLELIS                                                                                                         | MPEVILTAVEGI                                                   | KNDEVESEN               | KGDGCAHDVKR                    |
| tdA2BWT6IA2BWT6_PROM5/1-44  |                                                          | AVLELIS                                                                                                         | I PEVILITAYEGI                                                 | KNDEYESEN               | YKGDGCAHDVKR                   |
| PSSM2 253/1-44              |                                                          | TELILAA                                                                                                         | LPFVGLTLFFG                                                    | KNGYYDSDD               | YQGDGCAHDVKR                   |
| ·                           |                                                          |                                                                                                                 |                                                                |                         |                                |
|                             |                                                          | a di kacamatan di ka |                                                                |                         |                                |
| Conservation                |                                                          |                                                                                                                 |                                                                |                         |                                |
|                             |                                                          | 6997655                                                                                                         | 56+495769*++                                                   | 7759*7995               | 4*8*7**                        |
|                             | -                                                        |                                                                                                                 |                                                                | العمر العرابا           |                                |
| Quality                     |                                                          | _                                                                                                               |                                                                |                         |                                |
| Quanty                      |                                                          |                                                                                                                 |                                                                |                         |                                |
|                             |                                                          | _                                                                                                               |                                                                |                         |                                |
|                             | <b></b>                                                  |                                                                                                                 |                                                                |                         |                                |
| Consensus                   |                                                          |                                                                                                                 |                                                                |                         |                                |
|                             | MDAALSGMDLK                                              | TVILIT                                                                                                          | GLEVLACIEEGI                                                   | KNGEYDSDN               | VDGNGSAHDVKR                   |
|                             |                                                          |                                                                                                                 |                                                                |                         |                                |

#### <u>NdhQ</u>

|                             |                    |                        | 10                   |                       | 20                 |          |          | 30   |                     |                    | 40                                  |        |       | 50   |
|-----------------------------|--------------------|------------------------|----------------------|-----------------------|--------------------|----------|----------|------|---------------------|--------------------|-------------------------------------|--------|-------|------|
| Ndh Q  7/1-45               | MA                 | TDFNR                  | G I M K              | FDGAD                 | SPAI               | MIAI     | SAV      | LIL  | GFI                 | AGL                | IWWAL                               | HTA    | YA-   |      |
| tr B8HQ97 B8HQ97_CYAP4/1-47 | M S                | SDFDR                  | GIM <mark>K</mark>   | (FKGAD                | RPS                | MIAI     | SAI      | LLL  | GSI                 | GLL                | IWWSL                               | NTA    | YAL   | N    |
| tr B5W910 B5W910_SPIMA/1-46 | M <mark>P</mark>   | SDLDR                  | G I M <mark>K</mark> | (FKGAD                | SPT                | VVIV     | SSL      | LIL  | G <mark>S</mark> I  | GLL                | IWWAL                               | QTA    | YSF   |      |
| tr D8G423 D8G423_9CYAN/1-46 | M -                | SDLNR                  | GIM <mark>K</mark>   | (FKGAD                | SPT                | ATAV     | SAI      | AIL  | GGI                 | SFL                | IWWAL                               | QSA    | YAL   | s    |
| tr C7QLH3 C7QLH3_CYAP0/1-46 | M -                | SDLNR                  | GIM <mark>K</mark>   | FEGAD                 | K P A I            | LVAV     | SAI      | LVL  | GAI                 | TAL                | IFWAL                               | TTA    | YSV   | G    |
| tr B7K4W1 B7K4W1_CYAP8/1-46 | M -                | SDLNR                  | GIM <mark>K</mark>   | FEGAD                 | K P A I            | LVAV     | SAI      | LVL  | GAI                 | TAL                | IFWAL                               | ТТА    | y s v | G    |
| tr D7DVG7 D7DVG7_NOSA0/1-46 | M -                | SDLNR                  | GIM <mark>K</mark>   | FEGAD                 | SPK                | ννтν     | STV      | LLL  | G <mark>S</mark> I. | AAL                | ILWAL                               | QSA    | YAL   | s    |
| tr A0ZK00 A0ZK00_NODSP/1-46 | M -                | SDLNR                  | GIM <mark>K</mark>   | (FKGAD                | SPK                | V V T I  | STV      | LLL  | G <mark>S</mark> I. | AAL                | ILWAL                               | QAA    | YAL   | N    |
| tr Q2JND7 Q2JND7_SYNJB/1-45 | M -                | A D <mark>Y N R</mark> | GIM <mark>K</mark>   | FKGAD                 | SPI                | VVLI     | SAG      | IVA  | GVV                 | SAL                | IWWAL                               | HFA    | YAA   |      |
| tr D4TTM0 D4TTM0_9NOST/1-46 | M -                | SDLNR                  | GIM <mark>K</mark>   | FEGAD                 | SPK                | LVMV     | STV      | LVL  | G <mark>S</mark> I. | AIL                | LIWAL                               | RSA    | YAL   | G    |
| tr D4TLB5 D4TLB5_9NOST/1-46 | M -                | SDLNR                  | GIM <mark>K</mark>   | FEGAD                 | SPK                | LVMV     | STV      | LVL  | G <mark>S</mark> I. | AIL                | LIWAL                               | RSA    | YAL   | G    |
| tr B1XP04 B1XP04_SYNP2/1-45 | M -                | SDLNR                  | GIM <mark>K</mark>   | FDGAD                 | K <mark>P L</mark> | VVAV     | SAV      | LVL  | GAL                 | AAL                | V I W <mark>G</mark> L              | ТТА    | YSF   |      |
| tr\D4ZUJ7\D4ZUJ7_SPIPL/1-48 | MY <mark>MP</mark> | SDLDR                  | GIM <mark>K</mark>   | (FKGAD                | SPT                | VVIV     | SSL      | LIL  | G <mark>S</mark> I  | GLL                | I <mark>g</mark> wa l               | QTA    | YSF   |      |
| tr B7KK31 B7KK31_CYAP7/1-46 | M -                | SDLNR                  | GIM <mark>K</mark>   | FEGAD                 | K P A              | IVAV     | SAI      | LVL  | G <mark>S</mark> I  | AL                 | LIWAL                               | KV A   | YVV   | s    |
| tr B1WQ72 B1WQ72_CYAA5/1-46 | M -                | SDLNR                  | GIM <mark>K</mark>   | FEGAD                 | K P VI             | LVAI     | SAF      | LVL  | GAI                 | I <mark>G</mark> L | LIWAL                               | KAA    | Y T V | G    |
| tr Q110V2 Q110V2_TR/E//1-46 | M                  | SDLDR                  | GIM <mark>K</mark>   | (FKGAD                | TPR                | ATAT     | SAI      | LIL  | G <mark>S</mark> I  | VELI               | L F W <mark>G</mark> L              | NTA    | Y T V | G    |
| tr A3/ZB6 A3/ZB6_9CHRO/1-46 | M -                | SDLNR                  | GIM <mark>K</mark>   | FEGAD                 | K P F I            | LVAI     | SAF      | LVL  | GAI                 | I <mark>G</mark> L | I I WAL                             | NAA    | ΥTI   | s    |
| tr Q31QZ6 Q31QZ6_SYNE7/1-45 | <mark>M</mark> S   | - DL <mark>N</mark> R  | GIM <mark>K</mark>   | (F <mark>Q</mark> GAD | NPL                | AIGL     | SAV      | LIL  | G <mark>S</mark> I  | GLL                | I L W <mark>g</mark> L              | NAA    | YSF   |      |
| tr B0C254 B0C254_ACAM1/1-50 | <mark>M</mark> S   | SDFNK                  | <u>G I M</u> K       |                       | NPI                | TVAL     | S A I    | LIF  | G <mark>S</mark> I  | GLL                | I <mark>g</mark> w <mark>s</mark> L | ETA    | Y L V | GQLG |
| tr D3ER21 D3ER21_UCYNA/1-46 | M -                | SDLNR                  | G <mark>S</mark> M K | FEGAD                 | NPVI               | LVAI     | SAF      | LVF  | GFI                 | GAL                | I VWAN                              | IN N A | YVI   | н    |
| tr B0JM16 B0JM16_MiCAN/1-44 | M -                | SDLNR                  | GIM <mark>K</mark>   | FEGAD                 | K P A1             | VVAI     | SSI      | TV I | G <mark>S</mark> I  | IAL                | LWAN                                | IKVA   | Y I - |      |
| tr A8YLF6 A8YLF6_MICAE/1-44 | M -                | SDLNR                  | GIM                  | FEGAD                 | K P A              | VVAI     | SSI      | TV I | G <mark>S</mark> I  | IAL                | LWAN                                | IKVA   | Y I - |      |
| tr E0UE36 E0UE36_9CHRO/1-46 | <mark>M</mark> -   | SDLNR                  | G I M <mark>K</mark> | FEGAD                 | K P V              | IVAV     | SAA      | LVL  | GGI                 | VGL                | I I WA I                            | KVA    | YVV   | N    |
| tr B4VXI4 B4VXI4_9CYAN/1-38 |                    |                        | M <mark>K</mark>     | (FKGAD                | SPL                | ATVI     | зτν      | LVL  | GGI                 | AFL                | LWWAL                               | QTA    | Y N V | G    |
| tr A0YRS0 A0YRS0_LYNSP/1-45 | M -                | SDLNR                  | G I M <mark>K</mark> | FKGAD                 | SPV                | VVLA     | SSI      | VVL  | GGI                 | G F L 1            | VAWAL                               | QTA    | YSF   |      |
|                             |                    |                        |                      |                       |                    | -        |          | - 1  |                     |                    |                                     |        |       |      |
|                             |                    |                        |                      |                       | <b>.</b> .         |          | <b>.</b> |      |                     |                    |                                     |        |       |      |
| Conservation                | _                  | ومر ال                 |                      |                       |                    |          |          |      |                     |                    |                                     |        |       |      |
|                             | 1 -                | 14123                  | 30**                 | * 5 7 * *             | 5 2                | 5957     | * 7 6    | 796  | * 49                | 56*                | 95*89                               | 44*    | 51    |      |
|                             |                    |                        | _                    |                       |                    |          |          |      |                     |                    |                                     | . 🗖    |       |      |
| Quality                     |                    |                        |                      |                       | <b>.</b>           | <b>.</b> |          |      |                     |                    |                                     |        |       |      |
| Quality                     |                    |                        |                      |                       |                    |          |          |      |                     |                    |                                     |        |       |      |
|                             |                    |                        |                      |                       |                    |          | _        |      | _                   | _                  | _                                   | _      | _     |      |
|                             |                    |                        |                      |                       |                    | -        |          |      |                     |                    |                                     |        |       |      |
| Consensus                   |                    |                        |                      |                       | ч.                 |          |          |      |                     |                    |                                     |        |       | _    |
|                             |                    |                        |                      |                       |                    |          |          |      |                     |                    |                                     |        |       |      |
|                             | M S                | SDLNR                  | GIMK                 | FEGAD                 | SPA                | VVA+     | SAI      | LVL  | GSI                 | + A L              | IIWAL                               | QTA    | YAV   | G    |

Multiple sequence alignment of proteins similar to NdhP and NdhQ. The multiple sequence alignment was performed with the programmes CLUSTAL-X (Thompson et al. 1997) and Jalview (Waterhouse et al. 2009). The residue colour code is as follows: orange, Gly; yellow, Pro; green, Thr, Ser, Asn and Gln; red, Lys and Arg; blue, Trp, Met, Val, Ile, Ala, Leu and Phe; pink, Cys; cyan, His and Tyr; and magenta, Glu and Asp. The red bar indicates the position of the TMH within the sequence.

# Figure S5

| df6/1-174             | 1 MAEAFTSFTFTNLHIPSSYNHSPKQNSGPNHGYWLSNVNEKRERNLMRGSLCVRKALPHDLPLMAVMV(                                                                            | 68  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| ldhP_syn/1-40         |                                                                                                                                                    |     |
| ldhP T_elongatus/1-44 |                                                                                                                                                    |     |
|                       |                                                                                                                                                    |     |
| ndf6/1-174            | 69 QQIEGMRDIITEKHVW <mark>H</mark> LSDKAI <mark>K</mark> NV <mark>YMFYIMFT</mark> CWGCLYFG <mark>S</mark> A <mark>KDPFYDSEEYRGDGG</mark> DGTGYWVYE | 136 |
| NdhP_syn/1-40         | 1 · · · · · · · · · · · · · · · MD · · · ·                                                                                                         | 40  |
| NdhP T_elongatus/1-44 | 1 · · · · · · · · · · · · · · MD AV I SV <mark>KP ILLAMTPVF ILLCLEFGT · RNGFYD TDOY</mark> HGNG <mark>S</mark> AH · · · · · · ·                    | 44  |
|                       |                                                                                                                                                    |     |
| df6/1-174             | 137 TQEDIEEKARAELWREELIEEIEQKVGGLRELEEAVTK                                                                                                         | 174 |
| ldhP_syn/1-40         |                                                                                                                                                    |     |
| ldhP T_elongatus/1-44 |                                                                                                                                                    |     |

Sequence comparison of NdhP and NDF6 (AT1G18730). The sequence alignment was performed with the programmes CLUSTAL-X (Thompson et al. 1997) and Jalview (Waterhouse et al. 2009). The residue colour code is as follows: orange, Gly; yellow, Pro; green, Thr, Ser, Asn and Gln; red, Lys and Arg; blue, Trp, Met, Val, Ile, Ala, Leu and Phe; pink, Cys; cyan, His and Tyr; and magenta, Glu and Asp. The red bar indicates the position of the TMH within the sequence.

#### References:

- Battchikova, N., P. P. Zhang, S. Rudd, T. Ogawa and E. M. Aro (2005). "Identification of NdhL and Ssl1690 (NdhO) in NDH-1L, and NDH-1M complexes of Synechocystis sp PCC 6803." Journal of Biological Chemistry 280(4): 2587-2595.
- Blum, H., H. Beier and H. J. Gross (1987). "Improved Silver Staining of Plant-Proteins, Rna and DNA in Polyacrylamide Gels." <u>Electrophoresis</u> **8**(2): 93-99.
- El-Mohsnawy, E., M. J. Kopczak, E. Schlodder, M. Nowaczyk, H. E. Meyer, B. Warscheid, N. V. Karapetyan and M. Rogner (2010). "Structure and Function of Intact Photosystem 1 Monomers from the Cyanobacterium Thermosynechococcus elongatus." <u>Biochemistry</u> 49(23): 4740-4751.
- Kuhl, H., J. Kruip, A. Seidler, A. Krieger-Liszkay, M. Bunker, D. Bald, A. J. Scheidig and M. Rogner (2000). "Towards structural determination of the water-splitting enzyme Purification, crystallization, and preliminary crystallographic studies of photosystem ii from a thermophilic cyanobacterium." Journal of Biological Chemistry 275(27): 20652-20659.
- Rippka, R., J. Deruelles, J. B. Waterbury, M. Herdman and R. Y. Stanier (1979). "Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria." <u>Journal of General Microbiology</u> 111(Mar): 1-61.
- Shevchenko, A., M. Wilm, O. Vorm and M. Mann (1996). "Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels." <u>Analytical Chemistry</u> 68(5): 850-858.
- Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin and D. G. Higgins (1997). "The CLUSTAL\_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools." <u>Nucleic Acids Research</u> **25**(24): 4876-4882.

- Waterhouse, A. M., J. B. Procter, D. M. A. Martin, M. Clamp and G. J. Barton (2009). "Jalview Version 2-a multiple sequence alignment editor and analysis workbench." <u>Bioinformatics</u> **25**(9): 1189-1191.
- Whitelegge, J. P. (2002). "Plant proteomics: BLASTing out of a MudPIT." <u>Proceedings of the National Academy of Sciences of the United States of America</u> **99**(18): 11564-11566.