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Figure S1 (continued) 
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Figure S1, related to Figure 1.  

(A) Expression of genes suggested to be specifically over-expressed for human eRMS in murine 

Ptch1+/-;p53-/- soft tissue tumors versus aRMS or skeletal muscle. SKM, skeletal muscle. aRMS, alveolar 

rhabdomyosarcoma. Mcr, MCre. M5, Myf5Cre. P7er, Pax7CreER, Mf6, Myf6Cre. Statistically-different groups 
are signified by an asterisk (*). 

 (B) The human eRMS specific markers Lpar1, Hmga2 and Fzd4 distinguish murine Ptch1+/-;p53-/- , 

fusion negative soft tissue sarcomas from murine aRMS.   

 (C) The same eRMS specific markers Lpar1, Hmga2 and Fzd4 distinguish murine tumors of the 
Myf6Cre or Pax7CreER lineages from aRMS when Rb1 is not deleted; however, this ability to distinguish tumor 
samples is lost when Rb1 is homozygously deleted (data not shown in this figure; see Table S2).  

 (D) Quantitative RT-PCR for Myf5, Pax7, Myf6 and Pax3 genes in p53-/- and Ptch1+/-;p53-/- soft tissue 

tumors (osteosarcomas were excluded). Markers of the origin lineage were not necessarily up-regulated in the 
tumors that developed in each model, related to Figures 1-3. Expression of each gene was normalized to 
Gapdh expression. The aRMS model shown for comparison is derived from the Myf6Cre lineage. P7ER, 
Pax7CreER. Myf5, Myf5Cre. Myf6, Myf6Cre. SKM, skeletal muscle. 

 (E) Unsupervised hierarchical clustering of Ptch1-p53 soft tissue demonstrated no clear relationship 
between cell of origin and histological subtypes(average intensity>64, 12246 probes).  

 (F) Unsupervised hierarchical clustering of fusion-negative Ptch1-p53 or p53 soft tissue tumors from the 
Pax7CreER or Myf6Cre lineages identified a correlation between Rb1 mutation and global gene expression 
(average intensity>64, 12309 probes). Taken together, these results suggest that genetic events are more 
important for the determination of histological subtypes of RMS (phenotype) than the cell of origin. 

In panels (A) and (D), error bars represent SEM.      
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Table S1.  Classifier Analysis of eRMS vs. non-eRMS. Results for classifiers for tumor phenotypes based 
on original cell of origin. This supplemental table relates to Figure 1-3.  

Gene Expression by Lineage Classifier   resub   loo   cv   boot  .63boot average 

Myf6Cre  vs. Myf5Cre, MCre, Pax7CreER        

Myf6  LDA 0.25926 0.25926 0.34524 0.33119 0.36947 0.31288 

Myf6  KNN 0.14815 0.2963 0.29286 0.31899 0.25799 0.26286 

Myf5Cre vs. Myf6Cre, MCre, Pax7CreER        

Myf5  LDA 0.33333 0 0.4081 0.42411 0.41947 0.317 

Myf5  KNN 0.22222 0.2963 0.30952 0.32271 0.27027 0.28421 

Mcre (Pax3Cre) vs. Myf6Cre, Myf5Cre, 
Pax7CreER 

       

Pax3  LDA 0.37037 0.40741 0.40762 0.37634 0.39698 0.39174 

Pax3  KNN 0.11111 0.11111 0.11619 0.21192 0.13241 0.13655 

Pax7CreER vs. Myf6Cre, Myf5Cre, Mcre        

Pax7  LDA 0.2963 0.2963 0.33333 0.33533 0.29563 0.31138 

Pax7  KNN 0.22222 0.48148 0.49238 0.38169 0.37164 0.38988 

 

 

Table S2.  Classifier Analysis of eRMS vs. non-eRMS taking into account Rb1 deletion. Best markers and 
their errors differentiating various classes. This supplemental table relates to Figure 1.  

Comparisons Gene 1 Gene 2 Gene 3 Classifier Average Error 

Deleted Rb1 vs. Rb1 in M6, P7ER fnSTS Leprel2 Fzd4 Ptn LDA 0.19 
Deleted Rb1 vs. Rb1 in M6, P7ER fnSTS Leprel2 Psd3 Ptn KNN 0.19 
aRMS vs. deleted Rb1 in M6, P7ER fnSTS Gpr177 Hmga2 Egfr LDA 0.21 
aRMS vs. deleted Rb1 in M6, P7ER  fnSTS Gpr177 Egfr Hmga2 KNN 0.195 
aRMS vs. non-deleted Rb1 in M6, P7ER fnSTS Hmga2 Lpar1 Fzd4 LDA 0.08 
aRMS vs. non-deleted Rb1 in M6, P7ER  fnSTS Gpr177 Hmga2 Lrcc1 KNN 0.13 

M6, Myf6Cre.  P7ER, Pax7CreER. fnSTS, fusion negative soft tissue sarcoma (e.g., eRMS). 

 

 

Table S3.  Supervised Clustering of Microarray Results.  This supplemental table relates to Figure 1. Please 
find this table in the corresponding, accompanying Excel file.   

 



5 

 

 

Figure S2 Global gene expression relationships based on biological features, related to Figure 4.  
Markers found to be differentially expressed by eRMS or undifferentiated spindle cell sarcomas 
(USCS/UPS) for mouse and human. Error bars represent SEM.      
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Table S4.  SVM: Table of Classification Results.  This supplemental table relates to Figure 7 to validate five 
genes that as a profile differentiate SKM, eRMS, USCS/UPS and aRMS in humans.  

 
  Observed by Pathologist   

Predicted by 
Model 

Normal 
SkM 

ERMS ERMS,spindle 
cell variant 

RMS,spindle 
cell 

Spindle cell 
sarcoma 

ARMS Total Accuracy 

Normal SKM 12 0 1 1 0 0 14 0.71 (0.056) 

ERMS 0 23 7 4 1 0 35   

ERMS,spindle 
cell variant 

0 1 0 0 1 0 2   

RMS,spindle 
cell 

0 0 0 0 0 0 0   

Spindle cell 
sarcoma 

0 0 1 1 7 0 9   

ARMS 0 0 1 0 0 5 6   

Total 12 24 10 6 9 5 66   
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Table S5.  SVM: Table of Classification Statistics.  This supplemental table relates to Figure 7 to validate five 
genes that as a profile differentiate SKM, eRMS, USCS/UPS and aRMS in humans.  

Contrast Statistic Estimate 95% CI Joint CI 

Normal SKM 
vs. others 

True Positive Fraction (TPF or 
Sensitivity) 

1 (0) (0.81, 1) (0.78, 1) x (0.01, 0.12)
3
 

  False Positive Fraction (FPF) 0.04 (0.023) (0.01, 0.11)   

  Specificity (1 - FPF) 0.96 (0.023) (0.89, 0.99) (0.78, 1) x (0.89, 0.99)
4
 

  Positive Predictive Value (PPV) 0.86 (0.043) (0.62, 0.97) (0.62, 0.97) x (0.96, 1)
5
 

  Negative Predictive Value (NPV) 1 (0) (0.95, 1)   

ERMS  vs. 
others 

True Positive Fraction (TPF or 
Sensitivity) 

0.96 (0.025) (0.82, 1) (0.8, 1) x (0.09, 0.3)
3
 

  False Positive Fraction (FPF) 0.29 (0.056) (0.17, 0.43)   

  Specificity (1 - FPF) 0.71 (0.056) (0.57, 0.83) (0.8, 1) x (0.57, 0.83)
4
 

  Positive Predictive Value (PPV) 0.66 (0.058) (0.49, 0.8) (0.49, 0.8) x (0.92, 1)
5
 

  Negative Predictive Value (NPV) 0.97 (0.022) (0.86, 1)   

ERMS,spindle 
cell variant  
vs. others 

True Positive Fraction (TPF or 
Sensitivity) 

0 (0) (0, 0.22) (0, 0.26) x (0.01, 0.11)
3
 

  False Positive Fraction (FPF) 0.04 (0.023) (0.01, 0.11)   

  Specificity (1 - FPF) 0.96 (0.023) (0.89, 0.99) (0, 0.26) x (0.89, 0.99)
4
 

  Positive Predictive Value (PPV) 0 (0) (0, 0.67) (0, 0.67) x (0.75, 0.92)
5
 

  Negative Predictive Value (NPV) 0.84 (0.045) (0.74, 0.92)   

RMS,spindle 
cell  vs. 
others 

True Positive Fraction (TPF or 
Sensitivity) 

0 (0) (0, 0.33) (0, 0.39) x (0, 0.05)
3
 

  False Positive Fraction (FPF) 0 (0) (0, 0.04)   

  Specificity (1 - FPF) 1 (0) (0.96, 1) (0, 0.39) x (0.96, 1)
4
 

  Positive Predictive Value (PPV)   (0, 1) (0, 1) x (0.82, 0.96)
5
 

  Negative Predictive Value (NPV) 0.91 (0.035) (0.82, 0.96)   

Spindle cell 
sarcoma  vs. 
others 

True Positive Fraction (TPF or 
Sensitivity) 

0.78 (0.051) (0.46, 0.95) (0.41, 0.96) x (0.01, 0.11)
3
 

  False Positive Fraction (FPF) 0.04 (0.023) (0.01, 0.11)   

  Specificity (1 - FPF) 0.96 (0.023) (0.89, 0.99) (0.41, 0.96) x (0.89, 0.99)
4
 

  Positive Predictive Value (PPV) 0.78 (0.051) (0.46, 0.95) (0.46, 0.95) x (0.9, 0.99)
5
 

  Negative Predictive Value (NPV) 0.96 (0.023) (0.89, 0.99)   

ARMS vs. 
others 

True Positive Fraction (TPF or 
Sensitivity) 

1 (0) (0.62, 1) (0.55, 1) x (0, 0.08)
3
 

  False Positive Fraction (FPF) 0.02 (0.016) (0, 0.07)   

  Specificity (1 - FPF) 0.98 (0.016) (0.93, 1) (0.55, 1) x (0.93, 1)
4
 

  Positive Predictive Value (PPV) 0.83 (0.046) (0.44, 0.98) (0.44, 0.98) x (0.96, 1)
5
 

  Negative Predictive Value (NPV) 1 (0) (0.96, 1)   

1 
Support Vector Machine (SVM) using a Gaussian Radial Basis Function (RBF) kernel function (Scholkopf et al., 1997).  

2 
F-score and Supported Sequential Forward Search method (F_SSFS) for gene variable reduction (Lee, 2009).  

3
 For (TPF, FPF); 

4
 For (Sensitivity, Specificity); 

5
 For (PPV, NPV).     
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Figure S3 (continued) 
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Figure S3 (continued) 
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Figure S3 (continued) 
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Figure S3 Heatmaps of human fusion-negative rhabdomyosarcomas for gene signatures 
representing the p53, Shh, Rb1 or Ras pathways, related to Figure 8.   

(A) The p53 pathway heatmap was generated based on 320 significant genes (Benjamini and 
Hochberg adjusted p-value <0.05 & fold change > 2) with 183 genes were in metagene 1, whereas the other 
136 genes were in metagene 2. In total, 65 of 111 fusion-negative RMS primary tumor samples (59%) 
exhibited a gene expression signature consistent with the ‘p53 off’ state for which the S-score was greater than 
0.761 (see Supplemental Experimental Procedures). All human breast cancer control samples with known p53 
mutations also exhibited S-scores greater than 0.761.   

 (B) For the Shh signaling pathway heatmap, 111 genes were employed, 56 of which were in 
metagene 1, the other 55 genes were in metagene 2. Overall, 32 of 111 (29%) of tumors exhibited a gene 
expression signature consistent with a ‘Shh on’ overdrive state for which S-score was greater than 0.444. 
The p-value for comparison of the S-score for Shh+ medulloblastoma controls and for Shh- medulloblastoma 
controls was 2.62x10-5 as calculated by the Wilcoxon rank sum test.  

(C) For the Rb1 pathway, 381 genes were used to construct the heatmap, with 157 in metagene 1, 
and 224 genes in meta gene 2. For the Rb1 pathway, 42 of 111 (38%) of samples demonstrated an ‘Rb1 
state’ with an S-score greater than 0.345. All heatmaps for every single gene in all three pathways are 
provided in Supplemental Figure S5.   

 (D) To evaluate the Ras pathway, 87 genes common to zebrafish eRMS and human Ras-driven 
pancreatic cancer were used to construct the heatmap. A corresponding metagene analysis is given in Figure 
8D.  

 (E) As a secondary way to evaluate the Ras pathway, 112 genes common to zebrafish eRMS and 
human Ras-driven mammary epithelial cells were used to construct the heatmap, with 45 genes in metagene 
1, and 88 genes in metagene 2.  (see also Figure 8 legend and Results).  

  

Table S6.   p53 Signature Genes and Results. This supplemental table gives the detailed descriptions of gene 
lists and samples used to generate the metagene profiles in Figure 8A. Please find this table in the 
corresponding, accompanying Excel file.   

 

Table S7.   SHH Signature Genes and Results. This supplemental table gives the detailed descriptions of gene 
lists and samples used to generate the metagene profiles in Figure 8B. Please find this table in the 
corresponding, accompanying Excel file.   

 

Table S8.   Rb1 Signature Genes and Results. This supplemental table gives the detailed descriptions of gene 
lists and samples used to generate the metagene profiles in Figure 8C. Please find this table in the 
corresponding, accompanying Excel file.   

 

Table S9.   Ras Signature Genes and Results. This supplemental table gives the detailed descriptions of gene 
lists and samples used to generate the metagene profiles in Figure 8D. Please find this table in the 
corresponding, accompanying Excel file.   

 

Table S10.  Human Sample Subgroups for p53, SHH, Rb1 and Ras Signatures (99% CI). This supplemental 
table gives the detailed descriptions of human tumor samples used to generate the Venn diagram in Figure 8E. 
Please find this table in the corresponding, accompanying Excel file.   

 

SUPPLEMENTAL EXPERIMENTAL PROCEDURES  
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Mice 

The conditional alleles for Pax3:Fkhr knock-in(MMHCC Strain Code 01XBM B6), Patched1 deletion(MMHCC 
Strain Submission ID #232), p53 deletion, and Rb1 deletion have been previously described(Keller et al., 
2004a; Keller and Capecchi, 2005; Marino et al., 2003; Marino et al., 2000; Nishijo et al., 2009; Taniguchi et 
al., 2009). Myogenic Cre lines, including Myf6Cre(MMHCC Strain Code 01XBL B6), Myf5Cre, 
Pax7CreER(MMHCC Strain Submission ID #231), and MCre, were also described previously(Brown et al., 
2005; Keller et al., 2004a; Keller and Capecchi, 2005; Keller et al., 2004b). For the Pax7CreER line, tamoxifen 
was administered intraperitoneally for 5 consecutive days at 4 weeks of age. Kaplan-Meier survival analysis of 
the mice was performed with the end-point being the development of rhabdomyosarcoma (first visible sign of a 
tumor). The log-rank test was utilized to determine the statistical significance (p<0.05). Both analyses were 
performed with Systat12 software (Systat, Chicago, IL). 

Histology and immunohistochemical staining 

Fixed tissues were paraffin-embedded and sectioned at 3.5µm thickness. Paraffin sections were stained with 
hematoxylin and eosin (H&E) as previously described, or by Gomori Trichrome. For MyoD and Myogenin 
immunohistochemistry, staining was performed using the M.O.M. Immunodetection Kit Staining Procedure 
(Vector Laboratories, Burlingame, CA) following the manufacturer's instructions using antigen unmasking. The 
Myogenin monoclonal primary antibody (F5D supernatants; Developmental Hybridoma Studies Bank, Iowa 
City, IA) was used at a concentration of 1:50. The Desmin monoclonal primary antibody (Sigma Aldrich, St. 
Louis, MO, USA) was used at a concentration of 1:200.  

     Diagnostic criteria of eRMS ranged from morphological features of spindle cells without obvious 
rhabdomyoblastic differentiation to neoplasms composed of an admixture of primitive-appearing or spindle-
shaped cells with variable numbers of epithelioid or spindle cell shaped rhabdomyoblasts. Cross-striations 
were another supportive diagnostic feature. Expression of Desmin and Myogenin or MyoD was an additional 
criterion. UPS morphological criteria allowed a wider range of spindle cell morphologies, yet lacking 
rhabdomyoblasts or the immunohistochemical expression of Desmin, myogenin and MyoD.   

Cell culture and immunocytochemical staining 

For primary culture of mouse tumors, tumor tissues were digested with 1% collagenase IV (Sigma Aldrich) 
overnight, rinsed with PBS, and then plated on 10cm dishes. Cells were cultured in Dulbecco’s modified eagle 
media (DMEM, Sigma Aldrich) supplemented with 10% FBS. For induction of myogenic differentiation, cells 
were cultured under 2% horse serum for 5 days. For immunocytochemical staining, antibodies against Ki67 
and MHC were from Santa Cruz Biotechnology (Santa Cruz, CA) and DSHB, respectively. Nuclei were 
counter-stained with DAPI and observed under a Leica TCS-LSI confocal microscope (Leica, Bannockburn, 
IL).  

In vitro growth assays 

The CellTiter‐Glo Luminescent Cell Viability Assay (Promega, Fitchburg, WI) was utilized according to the 
manufacturer’s specifications. Mouse rhabdomyosarcoma primary cell cultures were plated at 5 x 103 cells per 

well in 96‐well plates. After 24 hours, the cells were washed thrice then incubated with DMEM and 1% or 10% 
FBS for 1 – 5 days. The effects on cell viability were assessed using the CellTiter‐Glo Luminescent Cell 
Viability Assay and the SpectraMax M5 luminometer machine (Molecular Devices, Sunnyvale, CA).  Three 
replicates were performed for each data point. 

Real-Time RT-PCR 

Quantitative reverse transcription-PCR (qRT-PCR) analyses for Figure S1 were performed by SYBR Green 
assay (PE Applied Biosystems, Foster City, CA).  Primers for these mouse genes (in 5’ to 3’ orientation) were:  
Egfr (cagatggatgtcaaccctgaag and tggagagtgtgtctttaaattcacc); Fbn2 (tcaattcagcagtgtagcgt and 
caagcacagcggttaggg); Fzd4 (gcagttcttcctttgttcggt and ccaaattctctcaggactggtt); Gpr177 (gcatcttcatcattatggtgtggt 
and catggaaatcccaagggcaaa); Hmga2 (aaatggccacaacaagtcgt and tctcccttcaaaagatccaactg); Hoxc10 
(cggataacgaagctaaagagga and gcgtctggtgtttagtataggg); Leprel2 (gaccacgagaggacatcca and 
ccgggtccttgaagctagt); Lpar1 (tcatggtggttctctacgct and agcagacaataaaggcaccaa); Lrrc1 
(gaaatcagctgtctgaattacctc and ccctcaggaattgtttctagca); Psd3 (ttcaagagatcggacgtt and acctgagagactgatcca); 
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Ptn (tggagctgagtgcaagtacc and ggcgtcttttaatccagcatct); Rrbp1 (agcaagtgtgaagagctgagtag and 
actccagctccttgagacga); Myf5 (ccttgctcagctccctcaa and gccatccgctacattgagag); Myf6 (gcctcgtgataactgctaagg 
and gttccaaatgctggctgagt); Pax3 (gcactattccttcgaacgca and ggttggtcagaagtcccatt); Pax7 
(cctcagtgagttcgattagcc and ggtagtgggtcctctcgaag).  For Figure 6, qRT-PCR was performed using custom 
Format-24 Taqman arrays (ABI and Assuragen, Austin, TX) using mouse or human GAPDH as a control for 
relative gene expression, and 18S RNA as a quality control. Statistical considerations are given in the 
Supplemental Methods.  Probesets for mouse samples were 18S-Hs99999901_s1, Adssl1-Mm00475814_m1, 
Bmp4-Mm00432087_m1, Cav1-Mm00483057_m1, Chrd-Mm00438203_m1, Chrng-Mm00437419_m1, Ckm-
Mm00432556_m1, Dlk1-Mm00494477_m1, Flnc-Mm00471824_m1, Gapdh-Mm99999915_g1, Gjd4-
Mm00462088_m1, Hes6-Mm00517097_g1, Jag1-Mm00496902_m1, Myf5-Mm00435125_m1, Myf6-
Mm00435126_m1, Myh3-Mm01332463_m1, Myl4-Mm00440378_m1, Notch3-Mm00435270_m1, Pax3-
Mm00435493_m1, Pax7-Mm00834082_m1, Sct-Mm00441235_g1, Sema3f-Mm00441325_m1, Tbx2-
Mm00436915_m1 and Unc5b-Mm00504054_m1.  Probesets for mouse samples were 18S-Hs99999901_s1, 
ADSSL1-Hs00411846_m1, BMP4-Hs00370078_m1, CAV1-Hs00971716_m1, CHRD-Hs00415315_m1, 
CHRNG-Hs00183228_m1, CKM-Hs00176490_m1, DLK1-Hs00171584_m1, FLNC-Hs00155124_m1, GAPDH-
Hs99999905_m1, GJD4-Hs00542133_m1, HES6-Hs00936587_g1, JAG1-Hs01070036_m1, MYF5-
Hs00271574_m1, MYF6-Hs00231165_m1, MYH3-Hs01074230_m1, MYL4-Hs00267321_m1, NOTCH3-
Hs01128541_m1, PAX3-Hs00240950_m1, PAX7-Hs00242962_m1, SCT-Hs00360814_g1, SEMA3F-
Hs00188273_m1, TBX2-Hs00172983_m1 and UNC5B-Hs00900710_m1.   

Pattern Recognition  

 The classifiers that have been used are LDA (Linear Discriminant Analysis) and KNN (K nearest 
neighbors) classifier. LDA tries to find the linear combination of the features that best differentiates the 
classes(Duda and Hart, 2001). KNN rule classifies a sample by assigning it the label most frequently 
represented among the k nearest samples; in other words, a decision is made by examining the labels on the k 
nearest neighbors and taking a vote(Duda and Hart, 2001). In our analysis, the neighbors have been decided 
based on the smallest Euclidean distances and k has been taken to be 3. KNN is a non-parametric 
classification technique and is considered to be simple and robust. The error estimation methods used for 
measuring the accuracy of the classifiers are (1) Re-substitution (resub): The same samples are used for 
training and testing. (2) Leave one out (loo): One sample at a time is left out for testing and rest are used for 
training the classifier. (3) 5 fold cross validation (cv): The data is randomly divided into 5 folds and 4 folds are 
used for training and the 5th fold for testing. This is repeated for x times. In our case, x was 10. (4) Bootstrap 
(boots): N samples are selected from the data with replacement. The samples not selected are used for 
testing. This is repeated for y times. In our case, y was 10. (5) .632 bootstrap (.632boots): the error is 
computed as .632*bootstrap error + .368 * re-substitution error(Kohavi, 1995).  

Gene Expression Microarray Analysis  

Mouse gene expression data were generated using Illumina Mouse Ref-8 BeadChip v1.1 (Illumina, San Diego, 
CA). Datasets were deposited in the GEO database (GSE22520). Rank invariant set normalization was 
performed on the log2-transformed expression value. To determine differential expression between 
phenotypes, we applied a t-test to the normalized expression data. Signature gene sets for a given comparison 
were selected by adjusted p-value <0.05 (Benjamini-Hochberg correction for multiple tests) and fold change 
>2. For functional annotation and enrichment, the significant genes of each comparison were uploaded to the 
Database for Annotation, Visualization and Integrated Discovery (DAVID, http://david.abcc.ncifcrf.gov) to 
identify enriched biological themes such as KEGG, BioCarta pathways, and Gene Ontology (GO) terms. 
Hierarchical clustering was performed to generate "heatmaps" by using Pearson correlation coefficient and 
average linkage for both gene and sample clustering. All bioinformatics tasks were performed with 
MATLAB/Bioinformatics Toolbox (Mathworks Inc, Natick, MA), unless otherwise noted. We also performed 
Principal Component Analysis (PCA) on all mouse tissue samples, with the 345 signature differential 
expressed genes between mouse eRMS and mouse UPS (selected with the criteria of raw p-value <0.05 & 
fold change > 2 (see Results)), samples expression levels were projected to  change greater than the first 3 
principal components and then plotted in 3D space for visualization.  A similar approach to the human fusion 
negative soft tissue sarcomas was taken using the criteria of p-value < 0.05 & fold change > 1.5. 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22520
http://david.abcc.ncifcrf.gov/
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All microarray gene expression data are deposited in the NCBI Gene Expression Omnibus database.   

Subtype Score (S-score)  

 In order to confirm the tumor subtype identified by pathologist with the gene expression profiling result, a 
subtype scoring method was developed to quantify each sample's consistency according to the training result. 
We briefly describe the method as follows.  

 Assuming there are n genes in the signature gene set as described before, and let x = {ri,j, ci}p, where ri,j is 

the log2-transformed expression level of gene j at sample i, and ci is the sample class label where ci  {-1, 1}, 

or ci = 1 if sample i belongs to subtype A; otherwise -1. Let, i,j to be the Pearson correlation coefficient 
between gene j and ci for each gene, or

  



i, j  cov(ri, j,ci) /( i c). pi is the t-test probability, p-value, of gene j 

between two subtypes. The Subtype Score (S-score) is defined as, 

 
  



si 
1

K
sign( j )p j

*

j1

n

 zi, j
,  

where  

    



p j

* 
3, if - log10(p j )  4

0, if - log10(p j ) 1





 

  



zi, j  ri,j j / j

*
,  

  



K  p j

*

j1

n


, 

and 

  



 j

* 
n1 1 1  n2 1  2

n1  n2 2  

j and j
* are mean and pooled sample standard deviation of gene j across all samples, respectively. Notice 

that S-score si is positive when its standardized expression value z and correlation have the same directional 
sign (positive or negative). The S-score simply average genes with significant test statistics, considering their 
directional effect across two subtypes. The calculation of S-score is implemented in MATLAB.  

No-Call Region of S-score: while the upper bound of the S-score, si, depends on the differential gene 
expression level, the lower bond can be determined by assuming all selected genes' expression levels are 
randomly distributed (no discernable differential expression). Let zi,j to be normally distributed with N(0, 1), and 
suppose there are n genes and total of M samples balanced in groups 1 and 2. The simulation results are 
shown in the graph following this paragraph for n = 50 to 1000, and M = 10,000, 1,000, 100 and 50. In addition, 
by assuming si

* to be approximately normally distributed and according to the large number theorem, we have 

the critical value, L0.05 = 1.97s, where s is the standard deviation of s* obtained from random gene 
expression value. Samples with S-score less than L0.05 will not be classified (no-call group) to control the call-
error to be less than 5% due to the random events. As expected, the bounds will be smaller with larger number 
of genes (chances of making "no call" shall be smaller with more genes in the gene set), or more samples. For 
example, for n = 100 and M = 100, we will not make a call for a given sample to be in either group 1 or 2, if si is 
outside (-0.34, 0.34), to guarantee no more than 5% of classification error. For the case of 13 ERMS samples 
vs. other non-ERMS samples (10), for a total of 345 signature genes, we have the no-call regions of (-0.51, 
0.51).  
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Relationship between number of genes, number of samples, and the no-call boundary L0.05. 

 

p53, Shh, Rb1 and Ras signatures in human fusion negative rhabdomyosarcomas We downloaded the 
public domain datasets for fusion negative rhabdomyosarcoma reported by Davicioni et al(Davicioni et al., 
2006) from (https://array.nci.nih.gov/caarray/project/details.action?project.experiment.publicIdentifier=trich-
00099) as well as eRMS rhabdomyosarcoma datasets from Lae et al(Lae et al., 2007) and Wachtel et 
al(Wachtel et al., 2004). These fusion negative RMS and eRMS datasets were designated as the test samples, 
whereas normal skeletal muscles (SKM) samples reported by Bakay et al(Bakay et al., 2002) were used as the 
control group. We also downloaded signature specific datasets as described in the paragraphs below. All the 
data had been performed on Affymetrix U133A array platform (Affymetrix, Santa Clara, CA). Sample IDs used 
are given in Table S6.   

 To examine whether human fusion negative RMS and eRMS tumors had evidence of p53 loss of 
function, we downloaded positive control datasets for the p53 loss of function gene signature in breast 
cancer(Miller et al., 2005), available in the GEO database. The breast cancer samples for p53 loss of function 
gene signature were treated as the positive controls, and the breast cancer samples without evidence of p53 
loss of function were treated as the negative controls. Normal SKM was also treated as a control group, 
whereas gene-wise t-test were performed between the two groups to derive the p53 loss of function signature 
genes specific to muscle (Benjamini and Hochberg adjusted p-value<0.05 & fold change >2). The two 
groups were also the training subtypes of S-score and all the samples were sorted based on their S-score. For 
metagene representations, the average z-values of SKM samples that are greater than 0 were represented as 
metagene 1, while those less than 0 were represented as metagene 2. The same methodology was used for 
representing metagenes for Shh and Rb1 signatures. 

 To examine whether human fusion negative RMS and eRMS tumors had evidence of Shh gain of 
function, we downloaded gene expression datasets for medulloblastoma samples known to exhibit a Shh gain 
of function signature(Thompson et al., 2006), available at 
http://www.stjuderesearch.org/data/medulloblastoma/. Sample IDs used are given in Supplemental Table 
S5B2. All the data had been performed on Affymetrix U133A array platform (Affymetrix). Because of concerns 
that brain and muscle specific Shh gain of function signatures may have marked differences, a list of genes 
activated and suppressed by Shh in muscle and similar cell types or tissues was created from a literature 
search, with hand-curated cross-correlation between probesets for mouse and human gene expression 

https://array.nci.nih.gov/caarray/project/details.action?project.experiment.publicIdentifier=trich-00099
https://array.nci.nih.gov/caarray/project/details.action?project.experiment.publicIdentifier=trich-00099
http://www.stjuderesearch.org/data/medulloblastoma/
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analysis platforms (Supplemental Table S7). An S-score was constructed based on 124 RMS samples and 18 
skeletal muscle samples (as described above) with the manually-curated Shh signature set for muscle. We 
then calculated the combined samples (total of 124+18+14+14 = 170 samples), and ordered them according to 
the S-score. Samples with S-score within 0.44 to -0.44 were assigned to be in "no-call group". To produce a 
heatmap, we also order the Shh signature genes according to their relative expression level (log-transformed 
ratio between RMS and SKM).  

 To examine whether human fusion negative RMS and eRMS tumors had evidence of Rb1 loss of 
function, we took genes from the supervised hierarchial clustering of Rb1 wildtype and homozygous Rb1 
deleted fusion negative mouse sarcomas presented in Supplemental Figure 3B and matched these genes to 
probesets for human gene expression microarrays using hand-curation (Supplemental Table S8).  S-scores 
were constructed and then evaluated for all RMS and SKM samples. All data were derived from Affymetrix 
U133A GeneChip. For heatmap display, samples were ordered based on their S-score, and genes were 
ordered based according to their relative expression level (log-transformed ratio between SKM and RMS). 

 To examine whether human fusion negative RMS and eRMS tumors had evidence of Ras activation, we 
used previously established gene lists for the activated Ras signature of zebrafish eRMS (Langenau et al., 
2007): 

1. Ras signature in fish eRMS common to Ras driven pancreatic cancer (87 unique genes), or 

2. Ras signature in fish eRMS common to Ras activated mammary epithelial cells (112 unique genes) 

Probes were matched manually between zebrafish and human platforms. For the first gene list (pancreatic), we 
used an S-score threshold of +/- 0.477 to define a 99% confidence interval that discerns samples with a Ras 
signature from samples without such a signature.  For the second gene list (mammary), we used an S-score 
threshold of +/- 0.435 to define a 99% confidence interval that discerns samples with a Ras signature from 
samples without such a signature.  

 

Quantitative RT-PCR Expression Analysis  

 Average gene expressions were collected on 22 genes for 66 patients with various tumor types. The 6 
tumor classifications were Normal Skm (n=12), ERMS (n=24), ERMS spindle cell variant (n=10), RMS spindle 
cell (n=6), Spindle cell sarcoma (n=9), and ARMS (n=5). Across all patients for the 22 genes (n=1452), there 
was 4.5% were randomly missing a gene expression. K-nearest neighbor method was used to impute the 66 
missing gene expressions. We reduced the number of genes used by the SVM to classify subjects using the 
F_SSFS method (Lee, 2009). The F_SSFS method selects genes on the basis of an F-score to quantify the 
separation between the values of the gene and each of the tumor categories. Only those genes with an F-
score greater than a certain predetermined threshold, which is based on the dimension of the data, are 
considered. The F_SSFS method then uses forward selection with genes whose F-score exceeds the 
threshold added to the selected subset that will be used in the final reduced classifier on the basis of the 
improvement in the accuracy of the SVM. To validate the final reduced classifier, we computed sensitivity, 
specificity, positive predictive value, negative predicative value and accuracy. After identifying the optimal 
subset of genes, a Leave-One-Out cross validation method was used to test the validity and accuracy of the 
SVM.  These same procedures were then applied to a subset of the data with the intermediate diagnosis 
groups, ERMS spindle cell variant and RMS spindle cell removed. 
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