Supplementary Material and Methods

Construction of the BRCA1 BRCT variant set

All the BRCA1 BRCT missense variants recorded (as of November, 2008) in the Breast Cancer Information Core (BIC) Database (http://research.nhgri.nih.gov/bic/) and eleven additional patient-derived variants were generated. The eleven additional variants are: T1700A (1), A1708V (2), D1739V, R1753T (3), M1775K (4), D1778Y, M1783I, Q1785H (3), E1794D (3), H1805P and R1835P.

Coding sequences for the tandem BRCT repeats of BRCA1 were generated with PCR primers FT7 (5'-gga cga gaa ttc tta acc agg gag ctg att atg gtg aac aaa aga atg tcc atg-3') and CD6 (5'-gat ctg gga tcc tca ggg gat ctg ggg tat cag-3'). The 5' primer FT7 includes a ribosome binding site and an *Eco*RI restriction site for cloning. The 3' primer CD6 includes stop codons and a *Bam*HI restriction site for cloning. The 3' primer CD6 includes were then cloned into the T7 promoter based expression vector, pLM1-BRCA1-BRCT (1646-1858), as previously reported (5). For P1859R, P1856S, L1854P, Y1853C, D1851E, L1844R, A1843P, S1841R, S1841N, V1838E, W1837C, W1837G, W1837R, E1836K, R1835P and V1833M, coding sequences were amplified using FT7 and modified CD6 primers that incorporated relevant mutations. For N1647K, S1651F, M1652T, M1652I, V1653M, S1655F, G1656D, F1662S, M1663L, M1663K, L1664P, V1665M and A1669S, coding sequences were amplified using CD6 and modified FT7 that included relevant mutations. All other missense substitutions were engineered using PCR splicing methods (6). All the vectors were sequenced to confirm presence of mutagenesis.

To generate plasmid constructs for use in transcriptional assays, pLM1 vectors containing the BRCA1 variants were digested with *Eco*RI and *Xba*I and the

0.7 Kb fragment containing the variants in the context of BRCA1 aa 1646-1859 was

isolated. The fragments containing the variants were ligated to a pCDNA3 vector

containing a GAL4 DNA Binding Domain digested with the same enzymes (7-9).

1. Abkevich V, Zharkikh A, Deffenbaugh AM, Frank D, Chen Y, Shattuck D, et al. Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation. J Med Genet. 2004;41:492-507.

2. Lovelock PK, Spurdle AB, Mok MT, Farrugia DJ, Lakhani SR, Healey S, et al. Identification of BRCA1 missense substitutions that confer partial functional activity: potential moderate risk variants? Breast Cancer Res. 2007;9:R82.

3. Carvalho MA, Marsillac SM, Karchin R, Manoukian S, Grist S, Swaby RF, et al. Determination of cancer risk associated with germ line BRCA1 missense variants by functional analysis. Cancer Res. 2007;67:1494-501.

4. Tischkowitz M, Hamel N, Carvalho MA, Birrane G, Soni A, van Beers EH, et al. Pathogenicity of the BRCA1 missense variant M1775K is determined by the disruption of the BRCT phosphopeptide-binding pocket: a multi-modal approach. Eur J Hum Genet. 2008;16:820-32.

5. Williams RS, Chasman DI, Hau DD, Hui B, Lau AY, Glover JN. Detection of protein folding defects caused by BRCA1-BRCT truncation and missense mutations. J Biol Chem. 2003;278:53007-16.

6. Horton RM, Ho SN, Pullen JK, Hunt HD, Cai Z, Pease LR. Gene splicing by overlap extension. Methods Enzymol. 1993;217:270-9.

7. Carvalho MA, Couch FJ, Monteiro AN. Functional assays for BRCA1 and BRCA2. Int J Biochem Cell Biol. 2007;39:298-310.

8. Vallon-Christersson J, Cayanan C, Haraldsson K, Loman N, Bergthorsson JT, Brondum-Nielsen K, et al. Functional analysis of BRCA1 C-terminal missense mutations identified in breast and ovarian cancer families. Hum Mol Genet. 2001;10:353-60.

9. Phelan CM, Dapic V, Tice B, Favis R, Kwan E, Barany F, et al. Classification of BRCA1 missense variants of unknown clinical significance. J Med Genet. 2005;42:138-46.

Prediction of pre-mRNA splicing defects in BRCA1 BRCT variants

In addition to the introduction of missense or nonsense mutations, single nucleotide polymorphisms can also affect pre-mRNA splicing. In theory, splicing can be disrupted through mutation of either the 5' donor, 3' acceptor or branch sites, or through creation of cryptic splice sites (1, 2). To probe the possibility that any of the BRCA1 BRCT missense variants could affect normal splicing patterns, we used the NNSplice 0.9 algorithm (3) to assess the effects of the BRCA1 SNPs on splice junction scores. The default threshold of 0.4 was used to find splice sites. Variant scores at least 20% lower or higher that the wild type score were marked as deleterious (4).

Fourteen of the tested mutants were predicted to potentially lead to splicing defects (Table 1). Nine variants (M1663L, M1663K, D1692H, D1692N, D1692Y M1775R, M1775K, D1778Y and D1778N) gave significantly reduced splice junction scores, and may be associated with an increased risk of exon skipping. Five mutations (V1714G, S1715R, W1718C, A1752V and V1809F) were predicted to potentially lead to novel cryptic splice sites.

Lee, M. *et al*. Supplemtary Figure 1a

Evaluation of BRCA1 missense variants

Variant	Structural assay		Functional assay			
	Trypsin	Structural stability(%)	oad SPTF PTF	Binding activity(%)	Binding specificity(%)	
WT		100		100	100	
N1647K		123±4		93±27	78±24	
S1651F		84±2		118±23	112±28	
M1652T		84±7		79±22	83±10	
M1652I		79±4		75±24	100±7	
V1653M		40±6		57±10	47±19	
S1655F		113±8		9±2	36±11	
G1656D		88±4		3±1	8±2	
F1662S		121±8		67±33	76±18	
M1663L		87±4		56±17	98±14	
M1663K		87±10		94±25	102±19	
L1664P		93±10		103±31	139±13	
V1665M		82±4		77±5	72±3	
A1669S		70±2	the second	108±18	66±7	
E1682K	Apple apple apple	92±5		76±11	87±15	
E1682V		66±3		107±8	55±1	
T1685I		13±1		32±10	11±6	
T1685A		18±3		16±0	14±1	
M1689T		91±3	and and	31±17	22±8	
M1689R		20±22		N/A	N/A	
T1691K		3±0		10±4	2±1	
T1691I		3±1		68±37	5±2	
D1692H		62±3		48±14	32±15	
D1692N		108±5		88±27	130±12	
D1692Y		54±3		83±17	45±8	
F1695L		64±10		113±10	59±3	
V1696L		44±5	and a second second	4±2	15±2	
C1697R	NOTIFICATION IN CONTRACTOR	3±3		37±0	22±11	
R1699W		90±2		3±2	8±3	
R1699Q		96±2	-	9±3	10±2	
R1699L		80±2		9±4	5±1	
T1700A		85±5	-	3±2	5±2	
G1706A		65±8		108±21	108±12	
G1706E	enote entite	2±0	- 21 1 22	5±0	14±2	
A1708V		58±3		24±3	16±10	
A1708E		4±1		24±5	9±4	

Structural stability for each variant was assessed by digestion of trypsin at 1 μ g/ml (lane 2), 10 μ g/ml (lane 3) and 100 μ g/ml (lane 4). The amount of full-length variant remaining after digestion with 10 μ g/ml (lane 3) was expressed as a percentage of the input protein (lane 1). Standard deviations represent results from at least 3 independent experiments.

Lee, M. *et al.* Supplementary Figure 1b Evaluation of BRCA1 missense variants

Variant	Structur	al assay	Functional assay			
	Trypsin	Structural		Binding	Binding	
		stability(%)	ad PTF IF	activity(%)	specificity(%)	
	1 2 3 4		Loa PSI SPT			
V1713A		61±3		25±7	3±3	
V1714G		4±1		13±3	9±1	
S1715R		1±0		10±4	9±1	
S1715N		22±7	and seen and	42±25	7±3	
S1715C		59±1		91±28	39±27	
W1718C		4±0		97±3	11±1	
W1718S	-	5±1		18±5	8±5	
T1720A		74±1		87±4	56±4	
S1722F	100 000	3±3		19±2	12±6	
R1726G		100±1		84±11	126±27	
N1730S		91±5		114±43	94±37	
D1733G		95±9		113±15	99±5	
F1734S		20±2		55±16	20±5	
V1736A		22±2		72±5	49±3	
V1736G		8±1		14±1	5±1	
G1738E		3±0	-	71±3	3±3	
G1738R		2±1		15±10	3±0	
D1739Y		2±1	-	10±8	5±1	
D1739V		0±1		5±4	11±2	
D1739E		11±2		6±2	20±5	
D1739G	10010	N/A		16±7	1±0	
V1741G		97±3		5±3	8±9	
H1746N		55±4	-	9±7	10±1	
P1749R		3±1		29±18	18±9	
R1751P		0±1		6±3	3±1	
R1751Q		59±4		76±12	58±10	
A1752V		0±0		89±7	31±8	
A1752P	100 100	N/A		16±12	5±1	
R1753T		0±1		42±9	16±9	
F1761S		18±1	-	N/A	N/A	
G1763V		41±1		19±1	15±7	
L1764P		18±0		23±9	19±6	
l1766S	1010	0±1		94±11	5±1	
P1771L		74±5		75±15	87±38	
P1771R		75±5		97±31	85±16	
T1773I		78±5		63±5	15±7	

Lee, M. *et al.* Supplementary Figure 1c Evaluation of BRCA1 missense variants

Variant	Structural assay		Functional assay			
	Trypsin	Structural	Binding		Binding	
		stability(%)	PTF FF	activity(%)	specificity(%)	
	1 2 3 4		Loa PSI SPT			
T1773S		70±3		68±7	71±25	
M1775R		48±5		3±1	21±10	
M1775K		103±7		19±3	12±0	
D1778G	-	103±6		87±21	88±15	
D1778Y		99±8		82±23	80±8	
D1778N		90±6		105±19	92±12	
L1780P	The same	9±2		29±5	2±0	
M1783I	100 100 100	112±2		84±16	92±12	
M1783T		75±10		48±7	59±2	
M1783L		106±0		139±16	96±27	
Q1785H		101±7		98±3	66±22	
C1787S		108±7	-	113±2	72±8	
G1788V	NUMP NAME	0±0		107±6	16±3	
G1788D	100100	100±6		66±2	32±10	
A1789S	100 60 100 111	87±4		56±7	63±13	
E1794D		93±2		112±26	109±25	
G1803A		84±5		92±5	103±10	
V1804D		89±9		119±10	53±1	
H1805P	600 600 100 T	70±2	-	102±21	75±16	
P1806A		74±2	the second second	79±15	106±13	
V1808A		95±5		68±12	58±10	
V1809F		12±2		72±22	39±8	
V1809A		84±4		66±13	49±8	
V1810G		83±2		97±9	69±3	
Q1811R		51±3		37±2	20±0	
D1818G		57±6		104±6	88±10	
N1819S		90±6		98±1	82±6	
A1823T		112±2		141±2	105±9	
Q1826H		88±3		52±6	59±25	
A1830T		100±1		85±9	49±2	
V1833M	same state that when	55±4		96±22	80±8	
R1835P		106±14	-	N/A	N/A	
E1836K		67±8		2±0	2±1	
W1837R		3±0		18±3	10±4	
W1837G		2±1		24±9	39±3	
W1837C		2±2		7±3	1±0	

Lee, M. *et al.* Supplementary Figure 1d Evaluation of BRCA1 missense variants

Variant	Structural assay			Functional assay			
	Trypsin	Structural stability(%)	oad SPTF PTF	Binding activity(%)	Binding specificity(%)		
V1838E		8±1		22±10	11±4		
S1841N	1000 9700	3±1	-	26±1	5±1		
S1841R	State State and story	35±1		17±3	7±1		
A1843P		31±1	the second second	27±10	16±2		
L1844R		101±2	-	42±11	67±2		
D1851E		113±17		71±8	89±6		
Y1853C		32±1		14±3	4±3		
L1854P		81±10		78±31	100±20		
P1856S		112±6		82±12	84±25		
P1859R		105±2		67±12	127±10		

