## **Supplemental Material**

## α-Synuclein Negatively Regulates PKCδ Expression to Suppress Apoptosis in Dopaminergic Neurons by Reducing p300 HAT Activity

Authors: Huajun Jin, Arthi Kanthasamy, Anamitra Ghosh, Yongjie Yang, Vellareddy Anantharam, and Anumantha Kanthasamy



Supplemental Figure 1.  $\alpha$ -Synuclein was exclusively located in the cytoplasm in  $\alpha$ syn-expressing N27 cells. *A*, Cytoplasmic and nuclear extracts from  $\alpha$ syn-expressing (Syn) and vector control (Vec) N27 cells were prepared and subjected to immunoblotting analysis of  $\alpha$ syn. LDH (cytoplasmic fraction) and Lamin B1 (nuclear fraction) were used as loading controls. *B*, Stained cells were mounted on slides and visualized under a Nikon TE2000 fluorescence microscope. Images were obtained with a SOPT digital camera. A representative image of  $\alpha$ syn immunostaining (green) and Hoechst staining (blue) is shown. Staining of  $\alpha$ syn-expressing (top panels) and vector control (bottom panels) cells with  $\alpha$ syn reveals immnuoreactivity specificity in the cytoplasm but not in the nucleus of  $\alpha$ syn-expressing cells. Scale bar, 10 $\mu$ m.





Supplemental Figure 2.  $\alpha$ -Synuclein does not affect the methylation status of PKC $\delta$  promoter. *A*, Schematic map of the putative promoter-associated CpG island region showing the location of MSP primers and the sequence of the region studied by MSP. The CpG dinucleotide is shown in red capital letters. *B*, MSP analysis of methylation status in PKC $\delta$  promoter. Bisulfite-modified DNA was used for MSP with primers specific for methylated (M) and unmethylated (U) DNA. Water blank was used as a negative control.

3

|       | -178    |         |        |          |       |      |                     |                                   |                |      |       |      |      |
|-------|---------|---------|--------|----------|-------|------|---------------------|-----------------------------------|----------------|------|-------|------|------|
| rat   | CTCCCAG | CTCCTTC | TCTCCG | -GCAGGGC | TGGAA | CCGG | CAGGO               | CTGGC                             | GCCGGG         | CACT | GAGCC | CGT  | CCAT |
| mouse |         |         | G      | - A      |       |      |                     |                                   |                |      |       |      |      |
| COW   | т –     | - T G   | CGG (  | CA AT    | C G   | TA   | С                   |                                   |                | С    |       | G    | TGC  |
| human | TAA     | AG      | T GG · | – A      | C G   | -A   | G                   | т                                 |                | C    | С     | G    | GC   |
|       | NE      | RF1a —— |        |          |       | _    | dHand<br>Neuro<br>M | I-E12 —<br>ogenin 1/3<br>Ayogenin | 3              |      | NFx   | 3    | _    |
| rat   | GGCTCTG | CACAAGC | CAGCAG | GAAGAG   | -GAAT | GA-G | GCCAG               | GCGAG                             | GCAGGC         | CAGC | rggcc | AGT  | GGGG |
| mouse |         | т       |        |          | -     | -    |                     | A                                 | G              |      |       |      |      |
| COW   | T CGCA  | тс      | A      | AA       | A GC  | Α    | С                   |                                   | AG             |      | G     | G CZ | Ŧ    |
| human | T CGA   | ТС      | A      | CA       | G G   | G-   |                     | A                                 | G              |      |       |      |      |
|       |         | _       |        | NFxB     |       |      |                     | Transcrip                         | otion sta<br>► | rt   |       |      | +22  |
| rat   | AGTCCCG | GGCGTGG | GCGCAA | GTAGTTGG | GGAAG | CCCC | GCCGC               | TGCCT                             | CCTGGG         | CTCC | ATTGT | GTGI | ľĠ   |
| mouse |         | т       |        |          |       |      | Т                   | ;                                 |                |      |       |      |      |
| COW   |         | CCA     | TG     | G AC     | C     |      | I                   | C                                 | С              |      | -G    | C (  | 3    |
| human |         |         | T TGG  | G CG     | C     |      | 0                   | SCC                               | CA             | С    | GC G  | C (  | 5A   |

Supplemental Figure 3. Sequence alignment of the proximal PKCo promoter.

The proximal rat PKC $\delta$  promoter sequence (-178 to +22, relative to the transcription start site) was aligned with the homologous sequences from the mouse, human, and cow genome using a DiAlign professional program. Sequence differences are indicated and gaps introduced to maximize homology are marked by dashes. The highly conserved TFBSs are labeled, and the NF $\kappa$ B sites are highlighted in red.

| Primer         | Sequence (5'-3')                   | Amplicon |
|----------------|------------------------------------|----------|
| РКСб Fg        | GTCTATCTCGAGCACTCTCCTGAAGCCCACCATG | 1901     |
| PKCδ Rg        | GTCTATAAGCTTCACACACAATGGAGCCCAGGAG |          |
| ΡΚCδ Fs        | GGGCTACGTTTTATGCAGCT               | 700      |
| PKCδ Rs        | AGCAGGTCTGGGAGCTCACT               |          |
| PKCa Fs        | TGAACCCTCAGTGGAATGAGT              | 325      |
| PKCa Rs        | GGCTGCTTCCTGTCTTCTGAA              |          |
| PKCe Fs        | CCACCAAGCAGAAGACCAAC               | 466      |
| PKCe Rs        | TTTGTGGACGACGCAGGTAC               |          |
| PKCη Fs        | GAAGGAGAGTCCATCAAGTC               | 497      |
| PKCη Rs        | TCAGCGTAGACCTGGAAATG               |          |
| PKCζ Fs        | GGGACGAAGTGCTCATCATC               | 541      |
| PKCζ Rs        | GAGGACCTTGGCATAGCTTC               |          |
| ΡΚCλ Fs        | GCAGTGAGGTTCGAGATATG               | 380      |
| PKCλ Rs        | CCAGCAGTTTGCAGTTGATG               |          |
| GAPDH Fs       | CAATGCATCCTGCACCAAC                | 320      |
| GAPDH Rs       | CATACTTGGCAGGTTTCTCCAG             |          |
| PKCδ Fq        | TAAGCCCAAAGTGAAATCCC               | 138      |
| ΡΚCδ Rq        | ACAAAGGAGAAGCCCTTGAA               |          |
| β-actin Fq     | ATCGCTGACAGGATGCAGAAG              | 76       |
| β-actin Rq     | TCAGGAGGAGCAATGATCTTGA             |          |
| Methylated F   | CGTAAGTAGTTGGGGAAGTTTC             | 230      |
| Methylated R   | CACGAAAACTAAAAAT CCGAC             |          |
| Unmethylated F | GGTGTAAGTAGTTGGGGAAGTTTT           | 233      |
| Unmethylated R | CCACAAAAACTAAAAATCC AAC            |          |
| ChIP F         | ACAAGCCAGCAGGAAGAGGA               | 163      |
| ChIP R         | TTATAGAGGAGGACTCCGAGGC             |          |

Supplemental Table 1: List of primer sequences used in the study.

F, Forward; R, Reverse; g, genomic PCR for cloning the rat PKCδ promoter; s, semiquantitative RT-PCR; q, quantitative RT-PCR.

| <b>Probe/Competitor</b> | Sense oligonucleotide (5'-3')             |  |
|-------------------------|-------------------------------------------|--|
| PkcoNFkB1               | GTAGTT <u>GGGGAAGCCC</u> CGCC (-20 to -8) |  |
| PkcδNFkB1 mutant        | GTAGTT <u>agetAAGCCC</u> CGCC             |  |
| PkcδNFkB2               | GCCAGTGGGGGGGGCC (-51 to -39)             |  |
| PkcδNFkB2 mutant        | GCCAGT <u>agetAGTCCC</u> GGGC             |  |
| NFkB consensus          | AGTTG <u>AGGGGACTTTCCC</u> AGGC           |  |
| AP-1                    | CGCTTGA <u>TGACTCA</u> GCCGGAA            |  |

Supplemental Table 2: Sense sequences of the oligonucleotides used in EMSAs.

Nucleotide sequences of the consensus binding motif are underlined. The localizations of the PKC $\delta$  NF $\kappa$ B sites, relative to the transcription start site, are shown. Mutated base pairs in mutant oligos are highlighted in bold and in lowercase.