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Supplementary Figure 1. Functional independence of the HIF-1a—ARNT pathway and
the HIF-1a—c-Myc pathway. Aand B, U-2 OS cells and those transduced with HIF-1a
variants were assayed for target gene expression of the HIF-1a—ARNT pathway (CA9
and PGKT) and of the HIF-1a—c-Myc pathway (MSH2, MSH6, and NBS1) by
conventional RT-PCR (A) and by immunoblotting with antibodies against specified
proteins as indicated (B). C, these cells were also assayed for activity of the HIF-1a—
ARNT pathway with an erythropoietin reporter plasmid pEpoE-luc (1). Desferrioxamine
(DFO, 100 uM overnight) served as a positive control of hypoxic induction. Relative
luciferase units (RLU) were measured in triplicates and plotted in mean + SEM. D, c-

Myc protein levels of these cells were determined by Western blot.
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Supplementary Figure 2. Induction of DNA damage and microsatellite instability via
the HIF-1a—c-Myc pathway. A, transduced cells as indicated were assayed for the
expression levels of y-H2AX and 53BP1 in the absence and presence of 0.5-yM
doxorubicin (+Dox) for 24 h. B, microsatellite instability was analyzed with the genomic

DNA isolated from the transduced cells using indicated markers.
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Supplementary Figure 3. Loss of tumor-suppressing activity and gain of malignant
properties arising from the HIF-1a—c-Myc pathway. A, U-2 OS cells transduced with
HIF-1a variants as indicated were assayed for mRNA levels of FHIT and WWOX by
conventional RT-PCR. HIF1A and ACTB genes served as controls. B, these cells were
also assayed for the exon regions of FHIT and WWOX as specified by PCR
amplification of genomic DNA. ZEBZ2 genomic DNA served as control. C, these cells
were seeded in soft agar for anchorage-independent growth. Individual colonies (top)
and the entire wells (bottom) were photographed and presented. D, the proliferative
potential of these cells was determined by a cell viability assay. Relative luciferase units

(RLU) were measured in 6 replicates and plotted as mean + SEM.
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Supplementary Figure 4. Gain of malignant traits in tumor cells expressing HIF-1a

PAS-B. A, transduced U-2 OS cells as indicated were assayed for proliferation in 6

replicates and presented as mean + SEM. B, transduced cells as above were assayed

for anchorage-independent growth. Images of colonies are shown. C, tumorigenicity of

transduced U-2 OS cells was determined in 10 CD-1 mice per group that were

subjected to bilateral, subcutaneous injections. Ten out of 10 mice injected with U-2 OS

cells expressing PAS1B developed tumors. D, U-118 MG cells expressing PAS1B

developed fast growing tumors that invaded dermal layers in xenografts. By contrast,

the parental U-118 cells and those expressing EYFP or PAS1B mutant (VAT) formed

tiny, circumscribed tumors. Images are presented in hematoxylin-eosin staining with

400 x magnification.
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Supplementary Figure 4. Requirement of HIF-1a for the gain of tumorigenicity with
long-term hypoxia. A, 5 CD-1 nude mice per group were injected subcutaneously with
HIF1a(PP) cells or U-2 OS cells that had been subjected to long-term hypoxia (LT Hyp)
or HIF-1a knockdown prior to the treatment (shHIF1A+LT Hyp), HIF-1a knockdown
alone, short-term hypoxia (ST Hyp), or short-term hypoxia plus days of recovery in
normoxia (ST Hyp+Rec). Gain of tumorigenicity is expressed in a ratio. B, H-E staining
of tumor specimens (T) shows hemorrhagic necrosis (N) and invasion of dermal layers
(D) and skeletal muscles (M). Two representative images with 200 x magnification are

shown.
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Supplementary Figure 6. Induction of epithelial-mesenchymal transition by HIF-1a
PAS-B. Transduced U-2 OS cells as indicated were subjected to immunofluorescent
staining with antibodies against E-cadherin (E-cad), B-catenin (B3-cat), and fibronectin

(FN). Cell nuclei were visualized with DAPI staining. P-C, phase-contrast microscopy.
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Supplementary Figure 7. Induction of ZEB2 by HIF-1a PAS-B for epithelial—
mesenchymal transition. A, ZEB2 expression was upregulated at mRNA levels as
determined by conventional RT-PCR in U-2 OS cells transduced with HIF-1a PAS-B.
Other known CDH1 transcriptional repressors Goosecoid (GSC), TCF3, and ZEB1 were
downregulated. Band C, U-2 OS cells were transfected stably with EGFP-ZEB2 fusion
and assayed for the expression of E-cadherin and fibronectin at mRNA (left) and protein
(right) levels (B), and were subjected to immunofluorescent staining for the detection of

E-cadherin, B-catenin, and fibronectin in (C).
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Supplementary Figure 8. Transduced cells expressing PAS1B were transfected with

small-interfering RNA targeting ZEB2 (siZEB2) and then subjected to
immunofluorescent staining with antibodies against E-cadherin (E-cad), B-catenin (f3-
cat), and fibronectin (FN). Cell nuclei were visualized with DAPI staining. P-C, phase-

contrast microscopy.
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Table S2

Mutagenesis

HIF-1c (FO9A)

sequences

forward 5' GCCTTGGATGGGCTTGTTATGGTTCTCACAGATGATG(3'
reverse 5' CCATCATCTGTGAGAACCATAACAAGCCCATCCAAGG(3'

Conventional RT-PCR

gene
HIF1A

MSH2

MSH6

NBS1

CA9

PGK1

CDH1

CTNNB1

FN1

SNAI1

SNAI2

GSC

TCF3

ZEB1

ZEB2

forward 5'
reverse 5'

forward 5'
reverse 5'

forward 5'
reverse 5'

forward 5'
reverse 5'

forward 5'
reverse 5'

forward 5'
reverse 5'

forward 5'
reverse 5'

forward 5'
reverse 5'

forward 5'
reverse 5'

forward 5'
reverse 5'

forward 5'
reverse 5'

forward 5'
reverse 5'

forward 5'
reverse 5'

forward 5'
reverse 5'

forward 5'

sequences

CCGGAATTCTCAACCACAGTGCATTG
CGGGGATCCATACGGTCTTTTGTCACTG

TCTGACTTCTCCAAGTTTCAGG
CTGGGCTTCTTCATATTCTGTTT

CACGCCATCCTTGCATTACG
TTGCTATTGCCGTCCCATCA

TCTGTCAGGACGGCAGGAAAGAAA
ACTCCTTTACAGTGGGTGCATCTT

AGTGCCTATGAGCAGTTGCTGTCT
GCCTCAATCACTCGCCCATTCAAA

TTGGACAATGGAGCCAAGTCGGTA
ACAATCTGCTTAGCCCGAGTGACA

TTCCCTCGACACCCGATTCAAAGT
TCCTTGGCCAGTGATGCTGTAGAA

TGGCCATCTTTAAGTCTGGAGGCA
AGATGACGAAGAGCACAGATGGCA

AACTGTACATGCTTCGGTCAGGGT
AGCTACTGGCTGTGATTTCGGTCA

TACAGCGAGCTGCAGGACTCTAAT
ACCCAGGCTGAGGTATTCCTTGTT

AGCCAAACTACAGCGAACTGGACA
ACACAAGGTAATGTGTGGGTCCGA

CCAGCATGTTCAGCATCGACAACA
CCAGCATGTTCAGCATCGACAACA

ACAGCAGCCTCTCTTCATCCACAT
AGGGCTGGACGAGAAGTTATTGCT

ATGCACAACCAAGTGCAGAAGAGC
TGCGCAAGACAAGTTCAAGGGTTC

AAGCTTGCCTCCAGAGCTTGACTA

3'
3I

3'
3|

3|
3I

3'
3'

3|
3I

3'
3'

3|
3I

3|
3'

3|
3|

3'
3'

3|
3|

3'
3'

3|
3|

3'
3|

3|

product size
914 bp

390 bp

405 bp

584 bp

305 bp

854 bp

382 bp

727 bp

583 bp

447 bp

511 bp

696 bp

806 bp

512 bp

562 bp



Table S2

Wwox

FHIT

EYFP

ACTB

reverse 5'

forward 5'
reverse 5'

forward 5'
reverse 5'

forward 5'
reverse 5'

forward 5'
reverse 5'

TTTGTGGGAGGGTTACTGTTGGGA

CGGGATTTCACTGGCAAAGTGGTT
AAACATCCTGGAGGAGCTGGACAA

TTTGGCCAACATCTCATCAAGCCC
TTCTGCTGCCATTTCCTCCTCTGA

TGACCCTGAAGTTCATCTGCACCA
TGTGGCGGATCTTGAAGTTCACCT

GTGGGGCGCCCCAGGCACCA
CTCCTTAATGTCACGCACGATTTC

3!
3'
3|
3|
3!
3'
3|
3|

382 bp

402 bp

384 bp

539 bp



table S3

genomic DNA-PCR
gene exon sequences product size
forward 5 AGGCCAGAAGATAGATTCAGTGGG 3

4 reverse 5 CCTACACAGGCTTCCATGACAACA 3  224Dbp
; foward 5 GCTGCCCTGTTCATGGTAAGATGT 3' .
reverse 5 AATCTCCATATGGTTAGCCCGGCA 3 P
WWOX
, foward 5 AGGTTTAGCAGAATCCCAGCCTCA 3 ..
reverse 5 ATACGGTTCACCTTAACAGGGCCA 3 P
, forward 5 GCCCACTCAAAGCCTTGTGACATT 3' ..
reverse 5 AAACATCCTGGAGGAGCTGGACAA 3 P
WWOX Exd Ex5 Ex6 Ex7

—r > ‘+—r >

forward &5 TGGATTTGAGTTAAGGTGGCACCG-3 3'

5 reverse 5 TTGGCTGGTTAGGCTCAGAAGACT-33  488bp
FHIT
, forward 5 TCCTGTGGGTATGAACTGCTTGGT-3 3,
reverse 5 ATCCATTACTCCCACCTGCTTGGT-3 3' P
FHIT Ex5 Ex6

e E— -+

forward 5' ACAAAGATAGGTGGCGCGTG 3 269 b
reverse 5' ATGAAGAAGCCGCGAAGTGT 3 P
ZEB2

forward 5° AAGCTTGCCTCCAGAGCTTGACTA 3'

reverse 5 TTTGTGGGAGGGTTACTGTTGGGA 3 262bp



Supplementary Table 1. Alteration of gene expression profile by transduced HIF-1a.

As determined by real-time PCR arrays, fold changes of gene expression in HIF1a(PP),
HIF1a(PP)+VAT, HIF1a(PP)+RFC, and HIF1a(PP)+shHIF1A cells were compared in
reference to the parental U-2 OS cells with HPRT expression for normalization. The
data presented are the average of the results from two independent arrays.
Upregulation is highlighted in green with fold changes > 1.5 as cutoff, whereas

downregulation is shown in red with fold changes < 0.5 as cutoff.

Supplementary Table 2. Primer sequences of mutagenesis and conventional RT-PCR

Supplementary Table 3. Primer sequences of genomic PCR

14



