Supplementary Materials

Supplementary Figure 1. Functional independence of the HIF-1 α -ARNT pathway and the HIF-1 α -c-Myc pathway. *A* and *B*, U-2 OS cells and those transduced with HIF-1 α variants were assayed for target gene expression of the HIF-1 α -ARNT pathway (*CA9* and *PGK1*) and of the HIF-1 α -c-Myc pathway (*MSH2*, *MSH6*, and *NBS1*) by conventional RT-PCR (*A*) and by immunoblotting with antibodies against specified proteins as indicated (*B*). *C*, these cells were also assayed for activity of the HIF-1 α -ARNT pathway with an erythropoietin reporter plasmid pEpoE-luc (1). Desferrioxamine (DFO, 100 μ M overnight) served as a positive control of hypoxic induction. Relative luciferase units (RLU) were measured in triplicates and plotted in mean ± SEM. *D*, c-Myc protein levels of these cells were determined by Western blot.

1

Supplementary Figure 2. Induction of DNA damage and microsatellite instability via the HIF-1 α -c-Myc pathway. *A*, transduced cells as indicated were assayed for the expression levels of γ -H2AX and 53BP1 in the absence and presence of 0.5- μ M doxorubicin (+Dox) for 24 h. *B*, microsatellite instability was analyzed with the genomic DNA isolated from the transduced cells using indicated markers.

Supplementary Figure 3. Loss of tumor-suppressing activity and gain of malignant properties arising from the HIF-1 α -c-Myc pathway. *A*, U-2 OS cells transduced with HIF-1 α variants as indicated were assayed for mRNA levels of *FHIT* and *WWOX* by conventional RT-PCR. *HIF1A* and *ACTB* genes served as controls. *B*, these cells were also assayed for the exon regions of *FHIT* and *WWOX* as specified by PCR amplification of genomic DNA. *ZEB2* genomic DNA served as control. *C*, these cells were seeded in soft agar for anchorage-independent growth. Individual colonies (top) and the entire wells (bottom) were photographed and presented. *D*, the proliferative potential of these cells was determined by a cell viability assay. Relative luciferase units (RLU) were measured in 6 replicates and plotted as mean ± SEM.

Supplementary Figure 4. Gain of malignant traits in tumor cells expressing HIF-1a PAS-B. *A*, transduced U-2 OS cells as indicated were assayed for proliferation in 6 replicates and presented as mean \pm SEM. *B*, transduced cells as above were assayed for anchorage-independent growth. Images of colonies are shown. *C*, tumorigenicity of transduced U-2 OS cells was determined in 10 CD-1 mice per group that were subjected to bilateral, subcutaneous injections. Ten out of 10 mice injected with U-2 OS cells expressing PAS1B developed tumors. *D*, U-118 MG cells expressing PAS1B developed fast growing tumors that invaded dermal layers in xenografts. By contrast, the parental U-118 cells and those expressing EYFP or PAS1B mutant (VAT) formed tiny, circumscribed tumors. Images are presented in hematoxylin-eosin staining with 400 × magnification.

Supplementary Figure 4. Requirement of HIF-1 α for the gain of tumorigenicity with long-term hypoxia. *A*, 5 CD-1 nude mice per group were injected subcutaneously with HIF1 α (PP) cells or U-2 OS cells that had been subjected to long-term hypoxia (LT Hyp) or HIF-1 α knockdown prior to the treatment (sh*HIF1A*+LT Hyp), HIF-1 α knockdown alone, short-term hypoxia (ST Hyp), or short-term hypoxia plus days of recovery in normoxia (ST Hyp+Rec). Gain of tumorigenicity is expressed in a ratio. *B*, H-E staining of tumor specimens (T) shows hemorrhagic necrosis (N) and invasion of dermal layers (D) and skeletal muscles (M). Two representative images with 200 × magnification are shown.

Supplementary Figure 6. Induction of epithelial–mesenchymal transition by HIF-1 α PAS-B. Transduced U-2 OS cells as indicated were subjected to immunofluorescent staining with antibodies against E-cadherin (E-cad), β -catenin (β -cat), and fibronectin (FN). Cell nuclei were visualized with DAPI staining. P-C, phase-contrast microscopy.

Supplementary Figure 7. Induction of ZEB2 by HIF-1 α PAS-B for epithelial– mesenchymal transition. *A, ZEB2* expression was upregulated at mRNA levels as determined by conventional RT-PCR in U-2 OS cells transduced with HIF-1 α PAS-B. Other known *CDH1* transcriptional repressors Goosecoid (GSC), TCF3, and ZEB1 were downregulated. *B* and *C*, U-2 OS cells were transfected stably with EGFP-ZEB2 fusion and assayed for the expression of E-cadherin and fibronectin at mRNA (left) and protein (right) levels (*B*), and were subjected to immunofluorescent staining for the detection of E-cadherin, β -catenin, and fibronectin in (*C*).

Supplementary Figure 8. Transduced cells expressing PAS1B were transfected with small-interfering RNA targeting *ZEB2* (si*ZEB2*) and then subjected to immunofluorescent staining with antibodies against E-cadherin (E-cad), β-catenin (β-cat), and fibronectin (FN). Cell nuclei were visualized with DAPI staining. P-C, phase-contrast microscopy.

Symbol	Unigene	GenBank	U-2 OS	HIF1α(PP)	HIF1α(PP) +VAT	HIF1α(PP) +RFC
AKT1	Hs.525622	NM_005163	1.00	0.01	1.26	00.0
ANGPT1	Hs.369675	NM_001146	1.00	5.06	0.77	7.87
ANGPT2	Hs.583870	NM_001147	1.00	0.08	0.84	0.04
APAF1	Hs.708112	NM_001160	1.00	0.34	0.93	0.19
ATM	Hs.367437	NM_000051	1.00	0.05	1.10	0.04
BAD	Hs.370254	NM_004322	1.00	0.14	1.62	0.05
BAX	Hs.631546	NM_004324	1.00	42.82	1.35	0.65
BCL2	Hs.150749	NM_000633	1.00	12.99	1.82	6.82
BCL2L1	Hs.516966	NM_138578	1.00	0.00	1.29	0.96
BRCA1	Hs.194143	NM_007294	1.00	0.01	1.28	0.00
CASP8	Hs.655983	NM_001228	1.00	0.03	0.99	0.02
CCNE1	Hs.244723	NM_001238	1.00	0.01	0.98	0.00
CDC25A	Hs.437705	NM_001789	1.00	0.03	1.09	0.01
CDK2	Hs.19192	NM_001798	1.06	0.00	0.90	0.00
CDK4	Hs.95577	NM_000075	1.00	0.36	1.24	0.17
CDKN1A	Hs.370771	NM_000389	1.00	0.00	0.97	0.00
CDKN2A	Hs.512599	NM_000077	1.00	56.48	0.93	14.29
CFLAR	Hs.390736	NM_003879	1.00	0.00	1.00	00.0
CHEK2	Hs.291363	NM_007194	1.00	0.02	1.82	0.00
COL18A1	Hs.517356	NM_030582	1.00	0.01	1.54	0.01
E2F1	Hs.654393	NM_005225	1.00	0.68	1.59	0.33
EPDR1	Hs.563491	NM_017549	1.00	0.01	3.18	0.01
ERBB2	Hs.446352	NM_004448	1.00	0.01	1.28	0.01
ETS2	Hs.644231	NM_005239	1.00	0.01	1.22	0.03
FAS	Hs.244139	NM_000043	1.00	0.01	0.71	0.00
FGFR2	Hs.533683	NM_000141	1.00	0.04	1.20	0.02
FOS	Hs.25647	NM 005252	1.00	0.53	1.04	1.01

0.65 0.00 0.00 0.77 0.00 1.00 0.00 2.82 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.00 0.00 0.00 4.67 0.02 0.01 0.47 0.96 1.00 0.88 1.16 1.40 1.19 1.55 1.69 1.89 I.03 0.95 1.18 1.02 1.38 1.30 0.46 1.08 1.22 1.68 1.32 1.86 0.78 1.18 1.00 1.64 1.81 0.97 1.73 0.71 1.44 32.39 0.00 1.00 0.01 2.43 0.06 0.00 0.00 0.00 0.45 0.00 0.00 0.03 0.00 0.00 0.00 0.06 0.02 0.00 1.76 0.00 1.98 0.01 0.01 0.01 0.01 0.00 0.00 00.0 1.74 0.00 00.1 00.1 00.1 00.1 00.1 1.00 1.00 1.00 00.1 00.1 00.1 0.00 8. 0.00 0.0 0.0 00.1 00.1 00.1 0.0 0.00 8. 0.00 0.0 0.0 0.00 00. 8. 8. NM_000885 NM_000245 **NM 020529** NM 024013 NM 002176 NM_000618 NM_002203 NM_002204 NM_002210 NM_000212 NM_002213 NM_002228 NM_002755 NM_006500 NM_002392 NM 004530 NM_004689 VM 004739 VM 003998 NM_000269 NM_006144 NM 000194 NM_006410 NM_000584 NM_002211 NM_004994 NM 014751 NM 002467 NM_181501 NM 002421 Hs.696076 Hs.265829 Hs.436873 Hs.218040 Hs.536663 Hs.145442 4s.599039 Hs.132966 Hs.297413 Hs.525629 Hs.173043 Hs.118638 Hs.160562 Hs.694732 Hs.707987 Hs.525704 Hs.567303 Hs.513617 Hs.336994 Hs.202453 Hs.654408 4s.412707 Hs.482077 Hs.81328 Hs.90708 Hs.90753 Hs.37026 Hs.83169 Hs.93177 Hs.624 HTATIP2 **MAP2K1 NFKBIA HPRT1** MTSS1 GZMA MCAM ITGB5 **NFKB1 FNA1** ITGAV ITGB3 MDM2 MMP2 MMP9 ITGA2 ITGA3 ITGA4 FNB1 TGB1 MMP1 MTA2 TGA1 MTA1 **LME1** МΥС JUN MET GF1 **6**

Table S1

s.9235 NM_005009 1.00 s.707991 NM_002607 1.00 s.1976 NM_002608 1.00	NM_005009 1.00 NM_002607 1.00 NM_002608 1.00	1.00 1.00	0.01 0.00 0.03	1.31 0.79 1.01	00.0 00.0
IS.1976 NM_UUZ6U8 1.00 IS.132225 NM_181504 1.00	NM_002608 1.00 NM_181504 1.00	1.00 1.00	0.03	1.01	0.01
Is.77274 NM_002658 1.00	NM_002658 1.00	1.00	0.00	0.77	0.00
s.466871 NM_002659 1.00	NM_002659 1.00	1.00	0.00	1.30	0.00
ls.409965 NM_002687 1.00	NM_002687 1.00	1.00	1.98	1.24	0.43
ls.159130 NM_002880 1.00	NM_002880 1.00	1.00	0.00	1.27	0.00
ls.408528 NM_000321 1.00	NM_000321 1.00	1.00	0.02	1.17	0.00
ls.654444 NM_002961 1.00	NM_002961 1.00	1.00	0.00	1.40	0.01
Is.55279 NM_002639 1.00	NM_002639 1.00	1.00	4.28	1.63	0.18
ls.414795 NM_000602 1.00	NM_000602 1.00	1.00	0.00	1.26	0.00
s.349470 NM_003087 1.00	NM_003087 1.00	1.00	0.01	1.43	0.01
s.371720 NM_003177 1.00	NM_003177 1.00	1.00	3.75	1.23	3.75
s.89640 NM_000459 1.00	NM_000459 1.00	1.00	0.09	0.89	0.04
ls.492203 NM_198253 1.00	NM_198253 1.00	1.00	46.21	8.24	9.23
Is.645227 NM_000660 1.00	NM_000660 1.00	1.00	0.00	0.99	0.00
ls.494622 NM_004612 1.00	NM_004612 1.00	1.00	0.12	1.18	0.05
Is.164226 NM_003246 1.00	NM_003246 1.00	1.00	0.01	1.00	0.00
ls.522632 NM_003254 1.00	NM_003254 1.00	1.00	0.00	0.93	0.00
Is.701968 NM_000362 1.00	NM_000362 1.00	1.00	0.66	1.97	0.66
s.241570 NM_000594 1.00	NM_000594 1.00	1.00	2.98	2.34	4.50
ls.521456 NM_003842 1.00	NM_003842 1.00	1.00	0.00	1.06	0.00
Is.279594 NM_001065 1.00	NM_001065 1.00	1.00	0.03	1.36	0.01
ls.462529 NM_003790 1.00	NM_003790 1.00	1.00	0.14	1.59	0.03
s.654481 NM_000546 1.00	NM_000546 1.00	1.00	0.00	1.02	0.00
s.66744 NM_000474 1.00	NM_000474 1.00	1.00	971.74	1.04	269.04
Is.73793 NM_003376 1.00	NM_003376 1.00	1.00	0.00	0.38	0.00

Table S1

Table S2

Mutagenesis					
			sequences		
HIF-1α (F99A)	forward	5'	GCCTTGGATGGGCTTGTTATGGTTCTCACAGATGATG	3'	
	reverse	5'	CCATCATCTGTGAGAACCATAACAAGCCCATCCAAGG	3'	
Conventional RT-PCR	2				
gene			sequences		product size
HIF1A	forward	5'	CCGGAATTCTCAACCACAGTGCATTG	3'	914 bp
	reverse	5'	CGGGGATCCATACGGTCTTTTGTCACTG	3'	
MSH2	forward	5'	TCTGACTTCTCCAAGTTTCAGG	3'	390 bp
	reverse	5'	CTGGGCTTCTTCATATTCTGTTT	3'	
MSH6	forward	5'	CACGCCATCCTTGCATTACG	3'	405 hn
MONO	reverse	5'	TTGCTATTGCCGTCCCATCA	3'	400 00
NBS1	forward	5'	TCTGTCAGGACGGCAGGAAAGAAA	3'	584 bp
	reverse	5'	ACTCCTTTACAGTGGGTGCATCTT	3'	
C40	forward	5'	AGTOCCTATCACCACTTCCTCTCT	2'	205 hp
CA9	roverse	5'		৩ ২'	303 ph
	1000130	5	00010/410/0100000/110/44	5	
PGK1	forward	5'	TTGGACAATGGAGCCAAGTCGGTA	3'	854 bp
	reverse	5'	ACAATCTGCTTAGCCCGAGTGACA	3'	
CDH1	forward	5'	TTCCCTCGACACCCGATTCAAAGT	3'	382 bp
	reverse	5'	TCCTTGGCCAGTGATGCTGTAGAA	3'	
CTNNB1	forward	5'	TGGCCATCTTTAAGTCTGGAGGCA	3'	727 bp
	reverse	5'	AGATGACGAAGAGCACAGATGGCA	3'	•
EN1	forward	5'	AACTGTACATGCTTCGGTCAGGGT	ג'	583 hn
1 1 1 1	reverse	5'	AGCTACTGGCTGTGATTTCGGTCA	3'	000 bp
SNAI1	forward	5'	TACAGCGAGCTGCAGGACTCTAAT	3'	447 bp
	reverse	5'	ACCCAGGCTGAGGTATTCCTTGTT	3'	
SNAI2	forward	5'	AGCCAAACTACAGCGAACTGGACA	3'	511 bp
	reverse	5'	ACACAAGGTAATGTGTGGGTCCGA	3'	l
000	formerand	51		21	606 hr
630	reverse	ว 5'		ত ২'	696 pb
	1010130			0	
TCF3	forward	5'	ACAGCAGCCTCTCTTCATCCACAT	3'	806 bp
	reverse	5'	AGGGCTGGACGAGAAGTTATTGCT	3'	
7501	forward	5'		2'	510 hn
LEDI	reverse	5'	TGCGCAAGACAAGTTCAAGGGTTC	3'	jiz up
		-		-	
ZEB2	forward	5'	AAGCTTGCCTCCAGAGCTTGACTA	3'	562 bp

	reverse	5'	TTTGTGGGAGGGTTACTGTTGGGA	3'	
WWOX	forward	5'	CGGGATTTCACTGGCAAAGTGGTT	3'	382 bp
	reverse	5'	AAACATCCTGGAGGAGCTGGACAA	3'	
FHIT	forward	5'	TTTGGCCAACATCTCATCAAGCCC	3'	402 bp
	reverse	5'	TTCTGCTGCCATTTCCTCCTCTGA	3'	
EYFP	forward	5'	TGACCCTGAAGTTCATCTGCACCA	3'	384 bp
	reverse	5'	TGTGGCGGATCTTGAAGTTCACCT	3'	
ACTB	forward	5'	GTGGGGCGCCCCAGGCACCA	3'	539 bp
	reverse	5'	CTCCTTAATGTCACGCACGATTTC	3'	

				g	jenoi	mic C	DNA-P	CR							
gene	exon					S	equer	ices				pr	oduc	t size	
	Л	forward	5'	AGG	CCA	GAA	GATA	GATT	CAGTG	GG	3'		504	hn	
	4	reverse	5'	CCT	ACA	CAG	GCTT	CCAT	GACAA	CA	3'		524	pb	
	~	forward	5'	GCT	GCC	CTG	STTCA	TGGT	AAGAT	GT	3'		400	h	
	5	reverse	5'	AAT	CTC	CATA	ATGG ⁻	TTAGO	CCGG	CA	3'		423	qa	
WWOX															
	<u>^</u>	forward	5'	AGG	ттт	AGC	AGAA	тссси	AGCCT	CA	3'		450	h	
	6	reverse	5'	ATA	CGG	TTC	ACCT	TAACA	GGGC	CA	3'		453	qa	
	-	forward	5'	GCC	CAC	CTCA	AAGC	CTTG	TGACA	TT	3'		F 4 4		
	1	reverse	5'	AAA	CAT	ССТС	GGAG	GAGC	TGGAC	AA	3'		511	р	
	v				E ~	5				E			7		
www.	^			⊂X4 ∢→>		>						××	1		
1	2	2				1				e				8	
		ာ ၂		4	9	1				O				0	
I ATG															-
												[
	5	forward	5'	TGG	ATTT	GAG	STTAA	GGTG	GCACC	CG-3	3'		488	hn	
	0	reverse	5'	TTGC	SCTO	GGTT	raggo	CTCAC	SAAGA	CT-3	3'		100	νp	
FHIT															
	6	forward	5'	TCCT	IGTO	GGG	TATGA	ACTG	CTTGG	ST-3	3'		461	hn	
	3	reverse	5'	ATCO	CATT	ACT	CCCA	CCTG	CTTGG	T-3	3'		-01	54	
FHIT				Ex	5				Ex6						
				-	→				< →	•					
3		4		4	;				6	7		8		Q	10
		-			<u> </u>										
														TGA	
														IGA	
	1	forward	5'	A	CAA	AGA	TAGG	TGGC	GCGTG		3'		260	hn	
	I	reverse	5'	A	TGA	AGA	AGCC	GCGA	AGTGT		3'		209	ph	
ZEB2															
	0	forward	5'	AAG	CTT	GCC	TCCA	GAGC	TTGAC	ΤA	3'		560	hn	
	õ	reverse	5'	TTT	GTG	GGA	GGGT	TACT	GTTGG	GA	3'		202	nh	

Supplementary Table 1. Alteration of gene expression profile by transduced HIF-1a.

As determined by real-time PCR arrays, fold changes of gene expression in HIF1 α (PP), HIF1 α (PP)+VAT, HIF1 α (PP)+RFC, and HIF1 α (PP)+sh*HIF1A* cells were compared in reference to the parental U-2 OS cells with *HPRT* expression for normalization. The data presented are the average of the results from two independent arrays. Upregulation is highlighted in green with fold changes > 1.5 as cutoff, whereas downregulation is shown in red with fold changes < 0.5 as cutoff.

Supplementary Table 2. Primer sequences of mutagenesis and conventional RT-PCR

Supplementary Table 3. Primer sequences of genomic PCR