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Supplementary Figures 

 
 

Figure S1: Potential species arising from fragmentation/ejection of PPant peptides. 

  



 S3 

 
 

 

Figure S2: Peptide species having the same molecular formula as alkylated PPant ejection 

fragment. In addition to the pictured peptide fragment, constitutional isomers and Ile/Leu 

substituted fragments also have identical molecular formulas. 
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Figure S3: Alterations made to Bayesian network from Payne et al. for InsPecT:PPant. 

Phosphorylation neutral loss nodes were duplicated as indicated by blue arrows pointing to red 

nodes. The original phosphorylation nodes (in blue) were modified to a PPant mass offset of -

397 and newly created nodes (in red) were altered to a pantetheinyl mass offset of -317. All 

newly created nodes inherited exactly the same edge relations as the nodes they were derived 

from. This is a necessary condition as no training is performed on PPant peptide examples. 
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Figure S4: Delta score distributions of CP domain related peptide hits and non-CP domain peptide hits. Each 

peptide hit was the best match for a MS
3
 PPant signature confirmed PPant peptide spectrum.  
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Figure S5: Example of mixture spectra (fp5ms3318-02.mzXML, scan 12217). InsPecT annotated spectrum as 

2+ K.NDENVLVFGEDVGVNGGVFR.A from protein PdhB, pyruvate dehydrogenase (E1 beta subunit). 

Green peaks were unannotated by InsPecT and correspond to expected characteristic PPant ions.  
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Table S1: CCMS LiveSearch InsPecT search results for FP-biotin enrichment of B. subtilis 168 

proteome. See tab-delimited text file, bsubtilis_livesearch_SLR_fdr01.txt. 

 

Table S1.1: CCMS LiveSearch InsPecT search results for FP-biotin enrichment of B. subtilis 168 

filtered for MS3 validated hits. See tab-delimited text file, bsubtilis_livesearch_SLR_fdr01_pp-

validated.txt. 

 

 

Table S2: Annotated Characteristic PPant Ions. Exact m/z values for each expected ion type are 

calculated using the parent PPant peptide’s monoisotope parent mass, M, and charge, z. 

                                                 
z is the peptide charge, i is the peptide isotope. 

Typical proteomic MS runs involve the artificial addition of a substrate to the thiol end of PPant 

(i.e. iodoacetamide treatment is required to break disulfide bridges with a resulting 57 mass 

addition to thiol groups). This substrate mass is represented as s, which is 0 for PPant with no 

substrate additions.  

 

Expected and Observed values are based on the +2 peptide “FFDLGGHS*LLAVQLMSR” (scan 

13673, run fp3-04, Figure 4), where M=2287.784, i=0, z=2, and s=57. 

 

 Ion type Expected m/z Calculation 

Expected 

m/z 

Observed 

m/z 
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1) Pant 
                

318.127 318.248 

2) PPant 
                

398.093 - 

3) PPant + H2O 
                       

416.109 416.266 
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4) M-PPant-H2O                             

 
 

926.342 937.277 

5) M-PPant                      

 
 

945.350 946.229 

6) M-Pant-H2O                             

 
 

976.325 977.261 

7) M-Pant                      

 
 

985.333 985.965 
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8) M-PPant-H2O                                 

     
 

1872.684 1872.904 

9) M-PPant                          

     
 

1890.699 1891.053 

10) M-Pant-H2O                                 

     
 

1952.650 1951.898 

11) M-Pant                          

     
 

1970.665 1970.980 
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Table S3: CP active site peptide identification search results for MS3 validated spectra, filtered 

by a 5% CP domain protein match p-value cutoff and a delta score cutoff of 3.84 (based on a 1% 

p-value using the empirical distribution of delta scores in the top 50 peptide interpretations of all 

spectra). See tab-delimited text file, out_identifyiso_out_detect_ms3_bsubtilis_d0384cpp005.txt. 

 

Table S4: List of PPant positive (1 in the train column) and negative (-1 in the train column) 

spectra used for SVM learning. See tab-delimited text file, svm_training_data.txt. 

 

Table S5: ProteomeCommons.org hosts all MS data used in this paper. Below are the Tranche 

Hashes to download data. 

 

MS Data Hash 
PikAIV  

 

 

 

B. Subtilis FP-
enrichment 

 

YbbR  

CouN5  

Nrps  
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 InsPecT:PPant Database Search for Peptide Identification  

 

In addition to the B. subtilis spectra, we evaluated InsPecT:PPant on the three recombinant 

proteins YbbR, Coun5, and Strop_4416 and found the delta scores of the true peptide sequence 

significantly outscored any peptide hits from the background peptide database (delta scores >40). 

The known peptide sequences of YbbR and CouN5 were added into the B. Subtilis proteome to 

run the database search protocol. The Salinispora tropica proteome from NCBI already included 

the Strop_4416 peptide and no special sequence additions were required for the database search. 

Also, these peptides were not treated with iodoacetamide and therefore had no substrate mass 

addition to PPant (Table S2, s=0). 

 

DS+ppantLEFIASKLA  - YbbR 

GILNS+ppantLNTAILVAH – CouN5 

HDNFFDLGGHS+ppantLLAASLATR – Nrps_4416   
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MS2 PPant peptide Detection SVM and Alternative Methods 

 

 

After PPant ion type features are annotated, we utilize these feature annotations to score whether 

a MS
2
 spectrum represents a PPant peptide. We applied 5 different metrics to assess which are 

better detectors of PPant peptides in MS
2
. Naively, the features can be combined into a score and 

applying a score threshold determines which spectra are PPant peptides. One common method is 

to assess the percent of relative abundance in the spectrum explained by feature (Explained 

Intensity). Relative abundance is known to vary greatly between replicate spectra and this metric 

typically does not perform well (observed in Figure 4). Similarly, we analyzed the number of 

expected PPant features found in the spectrum (Number of Ions Present). A better measure for 

intensity is to use the feature’s rank in the spectrum rather than the explicit relative abundance 

value. This motivated us to use the sum of the feature intensity ranks (Sum of Ion Intensity 

Rank) as a score. The total number of spectrum peaks is used as a default value for expected 

PPant features not observed in the spectrum. The last metric evaluated was the sum of PPM error 

in observed features (Sum of PPM Error). The default value for expected features not observed 

is 800, the maximum tolerance given to annotate spectrum peaks.  These metrics yielded some 

detection power, with the intensity rank performing the best. 

 

While the intensity rank metric performs fairly well, we sought to increase our detection 

capability using SVM. This kernel-based method defines “support vectors” from two classes of 

examples that are used to predict the class of datum. SVM requires the optimal selection of 

parameters, kernel, and most importantly a feature set. We evaluated 3 normalized feature sets, 

1) intensity rank features and ppm error features (22 features), 2) intensity rank features (11 

features), and 3) intensity rank features and ppm error features without parent peptide neutral 

PPant ejection (14 features). Each feature value was normalized with the appropriate maximum 

value; divided by total number of spectrum peaks for intensity rank features and divided by 800 

for ppm error features. We used the SVMLight implementation maintained by Thorsten 

Joachims to train classifiers and estimate leave one out errors.
1
 Feature set 1) had the best 

performance by a small margin under the parameters of radial-basis kernel with a gamma of 0.5 

and cost-factor of 1.0. We evaluated the linear, polynomial, and radial basis function kernel with 

cost-factors 2
i
 for i in [-5, 15]. Also, we evaluated degrees in the range of 2, 3, and 4, for the 

polynomial kernel and gammas in the range of 2
i
 for i in [-15, 2] for the radial-basis kernel. The 

optimal parameter set was selected by the SVM training that produced the best precision, recall, 

and error from SVMLight’s leave-one-out estimate. As seen in Figure 4, the SVM approach 

outperforms Sum of Ion Intensity Rank metric. 
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