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            Supplementary Material

1) Supplementary Figures and Table

Figure S1.

Comparison of segment placements for bR with k the residue number. Row A: Measured

segment locations by Jayasinghe et al. (Protein Sci. 10:455-458 (2001)); Row B:

groundstate computed from the model for variable segment lengths for µ = 0.7  kcal/mol

and Lα = 21− 26 ; Row C: placement by sequential adsorption; Row D: linear sequential

placement.

Figure S2.

Plot of the probability σ(k) that residue k is part of a TM segment at room temperature for

µ = 0.7  kcal/mol. (A) Wildtype bR sequence. The sixth segment is subject to location

and length fluctuations. There are no number fluctuations. (B) Shuffled bR sequence. In

addition to strong location/size fluctuations there are also segment number fluctuations.

Figure S3.

Mean number of transmembrane segments ρTM  for a randomly shuffled bR sequence as a

function of µ . (A) kBT = 0.01 kcal/mole. The plot of ρSA  for sequential adsorption

(dashed line) starts to deviate from ρTM  at the arrow. (B) Room temperature. Structures

with more than one segment suffer from strong number fluctuations (up to the 9-TM

segment structure). The corresponding occupancy plot at the site of the arrow is shown in

Figure 3 of the main text.

Figure S4.

Mean number of TM segments ρTM  as a function of µ . (A) Diacylglycerol kinase , a

3-TM segment protein. (B) Cytochrome C oxidase, a 12-TM segment protein. Dashed

lines show the mean number of TM segments ρSA  computed by sequential adsorption.



Table Legend
Table 1.

The second column gives the number of wildtype TM segments of the eleven IMPs

shown in column one with their corresponding PDB id. The third column gives the size

of the stability interval Δµ  for P = Pw of the groundstate structure as computed from the

model. The fourth column gives the average (over 100 runs) number of random single

point mutations (SPMs) normalized by sequence length required to change the segment

from its wildtype value for each protein, with the standard error in the fifth column. Note

that 1PW4 has a high thermodynamic stability but a low mutation threshold. The sixth

column gives the average (over 100 runs) mutation thresholds for each sequence after

random shuffling (100 realizations) with the standard error in the seventh column.
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Table 1

Protein
(PDB #)

Known #
of TM
helices

Relative gap
size

  
r =

Δµ
µN −1 + Δµ

Average #
of random
point
mutations
(wild type
sequence)

Standard
deviation
(wild type
sequence)

Average #
of random
point
mutations
(shuffled
sequence)

Standard
deviation
(shuffled
sequence)

Bacteriorhodopsin
(1BRD)

7 0.53 25.31 8.71 6.09 3.08

Sensory rhodopsin –
Anabaena (1XIO)

7 0.60 16.47 5.95 3.7 1.87

Halorhodopsin
(1E12)

7 0.51 13.38 6.85 4.78 2.45

Bovine rhodopsin
(1F88)

7 0.55 32.55 11.21 8.87 4.14

Sensory rhodopsin II
(1H68)

7 0.71 24.78 7.02 10.8 5.03

Bovine Cyto. C. Oxidase –
subunit III (1OCC)

7 0.51 31.65 11.37 9.49 4.42

Bovine Cyto. C. Oxidase –
subunit I (1OCC)

12 0.47 35.44 13.59 3.36 1.73

Glycerol -3 Phosphate
Transporter – E. coli (1PW4)

12 0.50 25.01 12.69 3.50 1.76

(P. denitrificans ) Cyto. C.
Oxidase – subunit I (1QLE)

12 0.34 13.11 6.49 2.73 1.25

Lactose Permease – E. coli
(1PV6)

12 0.32 8.35 4.36 4.19 2.16

Multi drug resistance protein
EmrD – E. coli (2GFP)

12 0.36 8.58 4.34 4.08 2.12



2)  Recursion Relation Method

Single Species

We first construct the recursion relations for the simple case where all TM segments have
the same length. We will work in the grand canonical ensemble, since the number of the
TM segments is allowed to fluctuate A one-dimensional lattice of L sites determines the
possible segment start locations, where L is the total length of the protein minus the
length of one TM helix.  Define ZF (l )  to be the (forward) partition function of the first l
sites subject to the restriction that one TM segment begins at site 1 and another at site l.
An on-site potential energy u(l) is included obtained by summing the hydropathy values
of the amino acids in the TM segment starting at l, as in equation [1] (for simplicity, we
absorbed here the chemical potential into the potential energy). Define the nearest-

neighbor interaction energy as −β
−1
log N (x ) , where x is the distance between the

starting sites of the two neighboring segments. The interaction can, in principle, be
arbitrary but we focus on the hard-core repulsion given by [2] of the main text. Note that
N(x) depends on the fixed length of the segment. Moving the fixed segment starting at l
by one step to the right produces a recursion relation for ZF (l ) :

ZF (l + 1) = e
−β u ( l+1)

ZF ( j )N (l+1− j )
j=1

l

∑ .

This equation must be supplemented with the boundary condition ZF (1) = e
−β u (1)

.
One can construct a similar recursion relation for the backwards partition function,
ZB (L − l ) , i.e. the partition function with TM segments fixed to begin at sites L and
L − l :

ZB (L − l ) = e
−β u ( L−l )

ZB ( j )N (L−l− j )
j=L−l+1

L

∑

along with the boundary condition ZB (L ) = e
−β u ( L )

. The probability for a TM to start
at site i is then given by:

ρ(i ) =
e
β u ( i )

ZF (i )ZB (i )

ZB (1)
.



The extra Boltzmann factor avoids double-counting of the factors in the forward and
backward recursion relations. Here, ZB (1)  is the entire partition function (alternatively

given by ZF (L ) ).

Multiple Species

We now generalize the recursion relations to allow for s different segment lengths. Each
segment species has its own external potential function uα (i ) , as in Eq. [1] of the main
text, through the varying lengths of the residue hydrophobicity sum. The hard-core

nearest-neighbor interaction between species is given by −β
−1
log Nα ,δ (x ) , where the

Greek indices represent the two species of the neighboring segments. Nα ,δ  actually only
depends on the length of the left segment, corresponding to the index α , and is given by

equation [2] of the main text. We need to define the forward partition function ZF
(α )
(l )

of the first l sites, subject to the restriction that a segment of species α  is present at
position l (we don’t need an index for the particle sitting at position 1 because we will
assume that this particle is of fixed species “1”).  Then this partition function has

boundary condition ZF
(1)
(1) = e

−β u1 (1)  for species “1” and equals zero for all other
species.  We can construct recursion relations for the forward and backward partition
functions ZF

(α )  and ZB
(α ) for each species:

ZF
(α ) (l +1) = e−βuα (l+1) ZF

(δ ) ( j)Nα ,δ (
j=1

l

∑ l +1− j)
δ =1

s

∑

ZB
(α ) (L − l) = e−βuα (L− l ) ZF

(δ ) ( j)Nα ,δ (
j=1

l

∑ L − l − j)
δ =1

s

∑

again with the boundary condition ZB
(1)
(L ) = e

−β u1 ( L )  for species “1” and zero for
others. The probability to find a segment of species α starting at i is given by:

ρα (i) =
eβuα (i )ZF

(α ) (i)ZB
(α ) (i)

ZB
(1) (1)

Here, we required that the backward partition function have species “1” at site 1 as was
assumed for the boundary conditions.

So far we have forced a segment of type “1” to sit at the first and last sites.  We
would like to relax this constraint and allow segments of any length (or none) at the
boundaries. To achieve this, we append an extra site to both ends of the system, and treat



particle type “1” as an extra species of hard-core monomer that only binds to the
boundary sites. Then the true boundaries of the system are free to fluctuate.
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