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A Appendix

A.1 Arp2/3 dissociation followed by treadmilling

In this model, filaments grow from barbed-ends at rate v+ and shrink from pointed-ends at rate v−.

Two biochemical events drive turnover: termination of barbed end growth, which occurs at time

τc, and Arp2/3 dissociation from the pointed end, which occurs at time τd. The joint probability

distribution of these reaction times is:

p(τc, τd) = kckd exp (−kcτc − kdτd) (A.1)

where kc and kd are the first-order growth termination and Arp2/3 dissociation rates respectively.

The rate equations describing the time evolution of the barbed end and pointed end positions are:

dB
dt

= v+ where t < τc

= 0 t > τc

dP
dt

= 0 t < τd

= v− t > τd

(A.2)

and the consequent time evolution of the barbed-end and pointed end positions are:

B(t|τc, τd) = v+t where t < τc

= v+τc t > τc

P (t|τc, τd) = 0 t < τd

= v−(t− τd) t > τd

(A.3)
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There are two regimes in this model, one where v− < v+ and pointed-end shrinkage is slower

than barbed-end growth, and one where v− > v+. We first solve the first regime. Here filament

elimination always occurs when a shrinking pointed end meets a non-growing barbed end. The

time of death is:

td(τc, τd) = τd + ατc (A.4)

where α = v+/v−. When τd < τc, the length dynamics are:

L(t|τc, τd) = v+t where t < τd

= v+t− v−(t− τd) τd < t < τc

= v+τc − v−(t− τd) τc < t < τd + ατc

(A.5)

When τd > τc, the length dynamics are:

L(t|τc, τd) = v+t where t < τc

= v+τc τc < t < τd

= v+τc − v−(t− τd) τd < t < τd + ατc

(A.6)

We can then integrate equations (A.5) and (A.6) over all possible random reaction times, given by

the distribution (A.1):

M(t) =

∫∫
L(t|τc, τd)p(τc, τd)dτcdτd (A.7)

to obtain the polymer mass curve:

M(t) = C
[ e−κτ

1− ακ
− ακ · e−τ/α

1− ακ
− e−τ

]
(A.8)
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where

τ = kct (A.9)

κ = kd/kc (A.10)

We now solve for the second regime where v− > v+. In this case, it is possible that the filament is

eliminated before capping occurs. Such transition-dominated kinetics occurs when τd < (1− α)τc.

Under these conditions, the length dynamics is:

L(t|τc, τd) = v+t where 0 < t < τd

= v+t− v−(t− τd) τd < t < τd/(1− α)

(A.11)

and the death time is:

td(τc, τd) = τd/(1− α) (A.12)

When τd > (1 − α)τc, i.e. when a capping event occurs, the length dynamics are given by the

previous equations (A.5), (A.6). Integration of these equations together with (A.11) gives:

M(τ) = C
[

exp (−κτ)− exp [−(1 + κ− κα)τ ]
]

(A.13)

Here, exponential polymer mass decay arises in the following regimes: 1) When Arp2/3 dissociation

is slow (κ� 1), such that it becomes the rate-limiting step in filament turnover:

M̂(t) ∼ exp (−κτ) (A.14)
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This result is similar to that in Eq. 13 of the main text. When Arp2/3 dissociation is rapid (κ� 1)

and growth and shrinkage rates are largely balanced (α ∼ 1):

M̂(t) ∼ exp (−τ) (A.15)

In this regime, Arp2/3 dissociation occurs rapidly, and the rates of barbed-end growth and pointed-

end shrinkage are similar (v− & v+), such that complete filament depolymerization requires capping

of barbed ends to stop growth. However, we do not favor this regime as it predicts the existence of

growing filaments in the Listeria comet tail, which is not observed experimentally (Figure S1).

A.2 Analytical polymer mass decay curve in the severing-dominated

limit

In this section, we derive differential equations that describe the time evolution of a filament

population undergoing severing together with endwise subunit dissociation. We then solve these

equations to obtain analytical expressions for polymer mass decay curves in the severing-dominated

limit. To do so, we first consider a discrete filament length distribution ni, which gives the number

concentration of filaments having length i. This filament distribution changes over time due to two

chemical reactions, 1) endwise dissociation of individual subunits from filament ends, which occurs

at a velocity of v− subunits/s and 2) severing, which is assumed to occur with at a uniform rate

along the filament length of ks/subunit/s. The following system of ordinary differential equations
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govern the time evolution of the filament distribution under such a reaction scheme:

dni
dt

= v−ni+1 − v−ni + 2ks

∞∑
j=i+1

nj − ks(i− 1)ni where 1 < ε < i <∞ (A.16)

The first term on the right hand side gives the rate at which a filament of length i + 1 loses a

subunit to give rise to a filament of length i; the second term gives the rate at which a filament of

length i loses a subunit, (giving rise to a filament of length i− 1); the third term gives the summed

rate at which all filaments with lengths longer than i sever to give rise to a filament of length i -

the coefficient of two reflects the fact that there are two places in which a filament can break to

give rise to a shorter filament of a given length; the fourth term gives the rate at which a filament

of length i can break any where along its length - it is proportional to the number of breakage sites

(i − 1). The number ε is a small discrete number describing the minimal stable filament length.

When filaments have a length much greater than unity i � 1, we can approximate the discrete

distribution ni(t) by a continuous length distribution n(x, t), which gives the number density of

filaments in with lengths between x and x+dx at time t. Consequently, we can approximate (A.16)

by the following partial differential equation:

∂n

∂t
= v−

∂n

∂x
+ ks

[
2

∫ ∞
x

n(x′)dx′ − nx
]

(A.17)

Here we have approximated the difference in the first two terms of (A.16) by a derivative, and the

summation in the third term of (A.16) by an integral. Equation (A.17) represents a simplified form

of the severing equations derived in [1][2] in the limit where the severing rate is uniform along the
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filament length. To obtain the total polymer mass at any given time, we integrate n(x, t) over all

filament lengths:

M(t) =

∫
xn(x, t)dx. (A.18)

Note that, so far, we have not considered filament growth and termination of growth, as we have

for single filament models. For complete correspondence with single-filament turnover models, we

can use an additional distribution m(x, t) to capture the growing filament population:

∂m

∂t
+ v+

∂m

∂x
= −kcm (A.19)

∂n

∂t
− v−

∂n

∂x
= kcm+ ks

[
2

∫ ∞
x

n(x′)dx′ − nx
]

and also use the initial conditions m(x, 0) = Cδ(x) and n(x, 0) = 0 to enforce the constraint that

all filaments are nucleated into the growing state m at t = 0. If we further assume that termination

of filament growth occurs quickly during the filament turnover cycle (as discussed for Model A,

Regime II; Eq. 7), we can take all filaments to already exist in a depolymerizing state at time

zero, and describe its population dynamics solely using equation (A.17) with the following initial

condition:

n(x, 0) = N exp (−kcx/v+) (A.20)

We now solve for equation (A.17) in two limits: one where there is no severing (ks = 0), and

another where severing dominates the depolymerization reaction (v− = 0). In the absence of
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severing (ks = 0), equation (A.17) reduces to an advection equation:

∂n

∂t
= v−

∂n

∂x
(A.21)

which has a general solution n(x, t) = n(x+v−t) and the following particular solution that satisfies

the initial conditions in (A.20):

n(x, t) = N exp
[
− kc(x+ v−t)/v+

]
(A.22)

Integration of this distribution over all filament lengths yields the following the polymer mass decay

curve:

M̂(t) =

∫
xn(x, t)dx = C exp (−τ/α) (A.23)

where τ = kct and α = v+/v−. This curve is the same as that derived from single-filament models

of treadmilling without severing (Eq. 7), demonstrating consistency between the two approaches.

In the regime where severing events are very frequent (σ = ksv
2
+/k

2
cv− � 1), we can neglect the

contribution of the endwise shrinkage terms involving v− to equation (A.17), which then becomes:

∂n

∂t
= ks

[
2

∫ ∞
x

n(x′)dx′ − nx
]

(A.24)

To obtain an analytical solution to this equation, note that we can express (A.24) in differential

form by taking a derivative with respect to x on both sides:

∂2n

∂x∂t
= ks

[
− 3n− x∂n

∂x

]
(A.25)
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We then note that the following particular solution satisfies the above equation:

n(x, t) = (kst+m)2 exp
[
− x(kst+m)

]
(A.26)

This solution also satisfies the initial condition (A.20) when m = v+/kc. To obtain the polymer

mass, we integrate (A.26) over all filament lengths:

M̂(t) =

∫ ∞
ε

n(x, t)dx (A.27)

to obtain the following polymer mass decay curve:

M̂(t) = C
[
1 + ε(kst+ v+/kc)

]
exp

[
− ε(kst+ v+/kc)

]
(A.28)

where ε is a critical size of a stable actin oligomer. Taking ε to be much smaller than the average

initial length of the filament εv+/kc � 1, we can rewrite equation (A.28) as follows:

M̂(t) = C(1 + τ) exp (−τ) (A.29)

where τ = εkst. Note that, in this severing dominated limit, loss of polymer mass becomes critically

dependent on the generation of small unstable oligomers that are smaller than the critical length ε.

A.3 Severing followed by rapid dissociation of severed fragments

Severing may facilitate polymer mass decay by either 1) increasing the number of ends from which

subunits can dissociate; or 2) generating small severed fragments that are disconnected from the
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main polymer assembly and hence rapidly diffuse away. In our single-filament simulations (Model

C), we assumed negligible contributions of the latter due to the high density of filament cross-linking

in the Listeria tail. However, previous work has shown that dissociation of severed filaments or

network fragments can influence the shape of the polymer mass decay curve [3].

In this section, we examine the effects of severed fragment dissociation by simulating the

severing-driven treadmilling model (Model C) in a two-dimensional lattice of cross-linked filaments

(Figure S3A) (see also Supplementary Methods). In this lattice, filaments are aligned horizontally

with barbed ends facing the right, and filaments in adjacent rows are cross-linked to each other at

a fixed interval of ξ subunits. To model the rapid diffusion of small severed fragments away from

this lattice, we enumerated, for every time point in the simulation, all subnetworks of filaments

connected by cross-links. We then excluded from polymer mass measurements sub-networks with

less than ε subunits – these sub-networks were taken to have diffused away rapidly from the fil-

ament assembly. In simulations, we adopted a set of parameters where filaments sever multiple

times during turnover (σ = 10, Regime II), and varied ε. Larger values of ε correspond to a more

pronounced effect of fragment dissociation on polymer mass loss.

Stochastic simulations of this filament lattice revealed that, while the polymer mass decay curve

M̂(τ) changes its exact shape as ε increases, it retains the shoulder and inflection point characteristic

of severing-driven turnover pathways (Model C, Regime II), and continues to be poorly fit by a

simple exponential (Figure S3). When ε = 1 (i.e. in the absence of fragment dissociation) polymer
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mass decay exhibits a shoulder and inflection point (Figure S3B), in agreement with single-filament

simulations and analytical results (Figure 3). Increasing ε to 50 or 500 has little effect on the initial

shape of the decay curve, which continues to exhibit a shoulder; instead, it results in an acceleration

of polymer mass decay only towards the tail of the decay curve (Figure S3B). This time-delayed

onset accentuates the inflection in the polymer mass decay curve and, as one might expect, worsens

its best-fit to a simple exponential (Figure S3C). These results are consistent with those in [3],

which found that severing in a filament lattice can lead to a delayed drop-off in polymer mass. In

both cases, the delayed onset of the drop-off in polymer mass due to severing is analogous to phase

transitions observed in probabilistic models of bond percolation. These results demonstrate that

severing together with severed fragment dissociation cannot plausibly account for polymer mass

decay in Listeria comet tails.

A.4 Severing with multi-step reaction kinetics

Severing is known to involve multiple intermediate kinetic steps, including hydrolysis of subunit-

bound ATP, phosphate release, and cofilin binding [4]. In stochastic simulations of filament turnover

presented in the main text (Model C), we treated severing as a first-order process, i.e. a first order

reaction occurring on a given subunit within a filament gives rise to a severing event. This is a

reasonable approximation if one particular intermediate step is much slower than the others, such

that it constitutes a rate-limiting step in the reaction. A number of imaging studies have found
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that cofilin-binding to dynamic actin assemblies occur on a faster timescale than turnover [5] [6],

suggesting that any intermediate steps leading to severing may indeed be faster than the putative

severing step itself. Nonetheless, in this section, we use stochastic simulations to study how polymer

mass decay is affected when severing involves multiple kinetic steps with similar timescales. This

model is similar to that presented in the main text (Model C), but differs in one aspect: in order for

a severing to take place, a subunit first switches into a ‘primed state’ (gray subunit, Figure S4A),

a reaction that occurs at rate ks2, then undergoes severing event, which also occurs at first-order

rate ks2.

Stochastic simulations for a set of parameter values where filaments sever multiple times during

turnover (Td/Ts = ks2〈L〉2/2v− = 10) yielded polymer mass decay curves with a shoudler and an

inflection point (Figure S4A), features common to the polymer mass decay curves involving one-

step severing for a similar set of kinetic parameters (Td/Ts = 10; Figure S4B). When performing

simulations over a range of second-order severing rates ks2, we found that found that polymer mass

was well-fit by a simple exponential when the severing rate ks2 as low, but became a progressively

worse fit to a simple exponential and a better fit to an inflected exponential as the severing rate

increased, also similar to polymer mass decay curves involving one-step severing (Figure 3D). From

these results, we conclude that a turnover scheme that involves a two-step severing reaction also

generates inflected polymer mass decay curves (FIgure S4C), similar to a scheme that involves a

one-step severing reaction (Model C). These results argue that the effects of severing on polymer
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mass decay as seen in Model C, are not specific to schemes involving first-order severing kinetics,

but instead reflect a more general property of severing-catalyzed turnover reactions.

A.5 Severing with slow Arp2/3 dissociation

Here, we consider the effects of severing on the turnover model where Arp2/3 dissociation triggers

treadmilling, focusing on the regime where the time required for Arp2/3 dissociation Td ∼ 1/kd

is much longer than the time required for complete shrinkage after Arp2/3 dissociation T− ∼

〈L〉/v− = v+/v−kc (Model B, Regime II). The regime of fast Arp2/3 dissociation (Td � T−) is

captured in the treadmilling and severing model above, whereas the regime where the timescale of

Arp2/3 dissociation is similar to that of shrinkage (Td ∼ T−) yields inflected polymer mass decay

curves, both in the absence and presence of severing (data not shown). In the absence of severing,

this regime yields an exponential polymer mass decay curve with a half-life given by the timescale

of Arp2/3 dissociation, as discussed above.

Stochastic simulations revealed that the shape of the polymer mass decay curve depends on the

relative magnitudes of the following three timescales: the average time required for a filament to

incur a single cut Ts ∼ 1/〈L〉ks = kc/v+ks; the time required to completely shrink a filament to

nothing T− ∼ 〈L〉/v− = v+/v−kc; and the time required for Arp2/3 to dissociate from the pointed

end Td ∼ 1/kd. Based on stochastic simulations, we noted three distinct regimes with different

polymer mass decay curve shapes: (I) A low severing rate such that the Ts � Td � T−. Here,
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filaments undergo Arp2/3 dissociation and complete depolymerization before a severing event could

occur (Figure S5A); consequently polymer mass decays exponentially, as expected from analytical

results (Eq. 13). (III) A high severing rate such that Ts � T− � Td. In this regime, filaments

incur multiple cuts during their turnover cycles, with each successive cut increasing the number of

depolymerizing pointed ends over time (Figure S5C). Consequently, the polymer mass decay curve

exhibits an shoulder and inflection point, similar to that seen for the treadmilling-only severing

model (Figure 3C). It is also better fit by an inflected exponential (Eq. 14) compared to a simple

exponential (Eq. 13). (II) An intermediate severing rate such that Td � Ts � T−. In this regime,

filaments also incur multiple cuts during their turnover cycles (Figure S5B). However, polymer

mass decays without any inflection point, but with a tail that considerably longer than that for

exponential decay. How does this long tail arise? After each cut, the daughter filament with an

exposed pointed end depolymerizes rapidly, whereas the filament daughter with an exposed barbed

end remains stable due to capping of its pointed end by Arp2/3 (Figure S5B). The long tail in

polymer mass decay reflects the presence of short filament segments proximal to Arp2/3 that are

long-lived due to the slower kinetics of severing for short Arp2/3 capped filament segments.

To gain analytical insight into polymer behavior at this intermediate severing regime Td �

Ts � T− (Regime II), we considered a bulk model where filaments exist completely in a stable

non-depolymerizing state due to slow Arp2/3 dissociation (implying Td � T−), but undergo sev-

ering with rate ks. The daughter filament with an exposed pointed end undergoes instantaneous
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and complete depolymerization (implying T− � Ts), leaving behind a stable non-depolymerizing

daughter filament with a non-depolymerizing barbed end and a Arp2/3-bound pointed end. Such

a mode of polymer turnover is described by the following partial differential equation:

∂n

∂t
= ks

[ ∫ ∞
x

n(x′)dx′ − fx
]

(A.30)

and the following initial condition:

n(x, 0) = N exp (−kcx/v+) (A.31)

were n(x, t) is the length distribution for non-depolymerizing filaments. Equation (A.30) differs

from (A.24) in that the coefficient of its integral term is one and not two, reflecting the fact that,

under this parameter regime, each severing event effectively gives rise to only one daughter, as the

other one rapidly depolymerizes after severing. The solution to equation (A.30) is given by:

n(x, t) = (kst+ kc/v+) exp
[
− x(kst+ kc/v+)

]
(A.32)

Integration of this distribution yields a hyperbolic polymer mass decay curve:

M̂(t) =

∫ ∞
0

xn(x, t)dx = C/(1 + τ) (A.33)

where τ = kc/ksv+t. This decay curve is a good fit to simulated polymer mass decay curves

obtained in this regime (Figure 5D), demonstrating consistency between numerical and analytical

results. However, it is still a inferior fit to Listeria polymer mass decay curves compared to a simple

exponential (Figure 1B,C; 〈F 〉 = 22.7 for 28 decay curves, d.f. = 75, p < 10−16), arguing that this

parameter regime also does not capture the turnover dynamics of filaments in Listeria comet tails.
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A.6 Large bursts without end bias

In this section, we consider a limit of the bursting-based turnover model where whole filaments

depolymerize in a single burst, and bursts initiate with uniform probability at any subunit along

the filament length without any end bias. This model captures the limiting behavior of a bursting-

based model where Z is large and β is small. The partial differential equations describing filament

length distribution time evolution for such a reaction scheme is:

∂n

∂t
= −kxn (A.34)

and the initial length distribution is, as before:

n(x, 0) = N exp (−kcx/v+) (A.35)

The solution to this equation with this initial condition is:

n(x, t) = N exp
[
− x(kc/v+ + kt)

]
(A.36)

and the polymer mass decay curve is given by:

M̂(t) =

∫ ∞
0

xn(x, t)dx = C/(1 + τ)2 (A.37)

where τ = kv+t/kc and C is a constant. While this curve is a good fit to simulated polymer mass

decay curves (Figure 4D,G), it is still an inferior fit to experimental polymer mass measurements

compared to a simple exponential (Figure 1B,C; 〈F 〉 = 8.2 for decay curves, d.f. = 75, p < 10−5),

arguing that this parameter regime does not explain filament turnover in Listeria comet tails.
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Supplementary Notes

S1. Our models differ from detailed biochemical models presented in the actin literature, which

typically consider the biochemical states of all subunits along the filament length, as well as all

known biochemical reactions that change the states of individual subunits [7] [8]. While the latter

types of models can be useful in in vitro experiments where rate constants can be carefully measured

in a controllable biochemical environment, they are perhaps of lesser utility in interpreting in vivo

experiments like ours, where not only are individual rate constants difficult to measure, but also

the extents to which given factors or reactions participate unclear.

S2. Here, we treat subunit addition and removal deterministically, assuming that these reactions

are much faster than other biochemical reactions under consideration, such as capping or Arp2/3

dissociation. If the rate of subunit association or dissociation is v, and the timescale of the other

biochemical reaction under consideration is τ � 1/v, there will be on the order of N = vτ � 1

subunit association/dissociation events prior to the occurrence of the other reaction. The time

interval between N such events follows a gamma distribution and has a mean µN = N/v and

variance σN = N/v2; consequently its coefficient of variation is µN/
√
σN = 1/

√
N � 1 and

will thus be small on the longer timescales of the reaction. We do not make this assumption in

stochastic simulations (Models C-E), but treat all reactions as stochastic first-order reactions. In

these simulations, filaments exhibit little variability in their rates of endwise shrinkage (i.e., Figure

3A), validating the use of a determinstic rate of growth / shrinkage in our analytical models (Models
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A-B).

S3. In the general case, the polymer mass at a given position along the Listeria comet tail will

derive from filaments nucleated at different positions along the bacterial trajectory, and hence at

different times. To estimate the variability in nucleation time, we first note that polymer mass at

a given position will derive primarily from filaments a distance ∼ l away, where l is the average

length of a filament. If the bacterium moves at a velocity v, filaments within this distance will have

a variability in the time of nucleation of ∼ l/v (Note that this estimation is an upper bound – it

will be smaller if we take into account the presence of an angular distribution of filaments in the

tail). If we take an maximal filament length of 0.3 microns [9], and a velocity of 0.2 microns/second

(from our data) we obtain a variability in timing of ∼ 1.5 seconds. As this variability in timing is

small compared to the timescale of actin turnover (∼ 30 seconds), we can take it to be negligible

in our analytical derivations here.

S4. The equations in this section reflect the solution to the regime v+ > v−; similar results are

seen in the other regime v+ < v−, see Appendix A.1.

S5. While simulations in Model C assume first order kinetics for the severing reaction, we note that

the same conclusions when this assumption is relaxed. In Appendix A.4, we show that reaction

schemes that involve higher-order kinetics of filament severing also yield inflected polymer mass

decay curves inconsistent with Listeria polymer mass decay.

S6. This reaction scheme describes reactions involving severing factors that cap newly-generated
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barbed ends after severing, such as gelsolin. It can also describe severing reactions involving factors

that do not also cap filament barbed ends, such as ADF/cofilin, if we assume that newly-generated

ends do not grow, possibly due to immediate capping by CapZ. Lack of further filament growth is

observed in imaging experiments ([10], and Figure S1).

S7. The hyperbolic decay has a tail that is considerably longer than that for a single-exponential.

This tail arises when Td � Ts � T− (Regime D.II) as each severing event results in the rapid

shrinkage of one daughter (as Ts � T−), but leaves behind a stable Arp2/3-bound daughter (as

Td � Ts). The long-tail in the decay reflects the presence of such short Arp2/3 bound daughters

that are longer-lived as they initiate severing at a lower rate. See also Appendix A.5.

S8. In these simulations, we kept the following parameters constant: 1) rate of initiation of bursting

k, which affects the time axis scaling of the polymer mass decay curve but not its shape. 2) the

mean initial filament length 〈L〉 = v+/kc = 70 subunits in simulations. To first order, models with

a similar 〈L〉 : Z ratio will exhibit similar dynamic behavior. Hence, varying either 〈L〉 or 1/Z

would be expected to have the similar effects on polymer turnover dynamics.

S9. Filament turnover by small unbiased bursts (Figure 4B) is similar to turnover by small end-

biased bursts (Figure 4C) or by severing (Figure 3) in that it involves multiple disassembly events

along the filament length; however, it differs from the latter two schemes in that a disassembly

event along the filament length does not affect the disassembly of neighboring subunits along the

filament length. Consequently, exponential decay arises as all regions along the filament length
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are subject to the same first-order rate of disassembly at all times. In the case of severing or

small end-biased bursts, disassembly events along the filament length accelerate the disassembly of

neighboring regions, as they create new filament ends, which have a higher disassembly rate. In the

latter two cases, the decay curve is no longer-exponential, as (first-order) disassembly rates change

over time as disassembly events accumulate along the filament length (see also Note S10).

S10. Here, filaments burst preferentially from ends, giving rise to multiple successive bursting

events from filament ends (Figure 3C, kymograph); however, more infrequently, filaments undergo

internal bursting events, which in turn generate new filament ends that undergo endwise bursting

at an elevated rate. Curiously, when the end bias increases even further (β > 103), polymer mass

decay becomes exponential again. Here, the degree of end bias is so high that internal bursting

events rarely occur during a single turnover cycle; consequently, filaments depolymerize through

through successive endwise bursting events, akin to depolymerization through successive endwise

subunit dissociation.

S11. To estimate β, we first note that the fraction of observed bursts from ends f = (βk +

Zk)/(βk + 〈L〉k). The numerator is the sum of the rate at which the terminal subunit initiates

a burst (βk), and the rates at which internal subunits half a burst size away from either filament

end initiate a burst; the denominator is the total rate of bursting initiation from all subunits. 〈L〉

is the mean filament length. By solving for β in this expression, we get β = (f〈L〉 − Z)/(1 − f).

Taking 〈L〉 ∼ 1000, f = 0.78 and Z = 260, we get β ≈ 2400 ∼ 1000.
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S12. In concordance with our previous analysis [11], we scored internal disassembly events as

severing, though it is likely that these discrete events result in a burst of polymer mass loss,

rather than a clean cut that does not reduce polymer mass. Note that, our models make different

predictions for severing-mediated turnover (Model C, Regime II) and bursting-mediated turnover

(Model E, Regime I); the former does not generate exponential decay, whereas the latter does.

Supplementary Methods

Quantification of polymer mass decay in Listeria comet tails

To track the position of the bacterium over time, a maximum intensity projection of all images in

the time-series was calculated (Figure 1A). The projection image gave a trail of actin-fluorescence

delineating the bacterial trajectory, which was then manually traced using a piecewise-linear con-

tour. A kymograph was then taken along the contour. The kymograph along the trajectory was

then corrected for photobleaching as follows: An estimate of the degree of photobleaching was

first obtained by calculating the bulk fluorescence intensity for all images in a single time-series

St =
∑

i,j pt(i, j). Here p gives the grayscale intensity value at a given time and position, and St

is the sum of pixel intensities in an image for each time point. The decay profile of St gives the

photobleaching rate under the assumptions that the entire cell is evenly illuminated in the field of

view, and that synthesis and degradation of GFP-actin is slow on experimental timescales. St typ-
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ically decreased linearly over time by < 10% in a 10 minute experiment, indicating the lack of any

significant photobleaching during the experiment. The fluorescence intensities in the kymograph

were then normalized by their bulk fluorescence intensity values at their respective times. The

photobleaching-corrected kymograph was visually inspected for aberrations that could affect sub-

sequent analysis. These aberrations included bright fluorescent objects that crossed the trajectory

of the bacterium, and points at which the trajectory crossed over itself. Space or time points corre-

sponding to these events were removed from the kymograph. After correction for photobleaching,

decay curves at each point along the trajectory were temporally aligned such that t = 0 corresponds

to the time at which polymer mass reaches its maximum. The background fluorescence intensity,

given by the asymptotic value of the decay curve at the end of the movie, was then subtracted

from each curve. These asymptotic intensity values were indistinguishable from those obtained in

directly adjacent regions of interest (data not shown), indicating that polymer mass had decayed

completely by the end of movie. Background-subtracted polymer mass decay curves were then

individually re-scaled to set the value of the initial peak to unity, compensating for variations in

absolute fluorescence intensity between different decay curves due to slight changes in focal plane

of the comet tail. The resultant decay curves were then averaged, giving rise to a mean decay curve

(Figure 1B).

Averaged polymer mass decay curves were then fitted with the analytical curves described in

the text (All curves considered here have only one fitting parameter). The goodness of fit values

23



for each curve was then given as χ2 =
∑N

i=1(Mi − M̄i)
2/N , where Mi gives the experimentally-

measured polymer mass at time point i, M̄i gives the polymer mass from the best-fit analytical

decay curve at time point i, and N gives the total number of data points (Figure 1C). To compare

the relative goodness-of-fit of two different fits a and b, we calculated the F -statistic Fab = χ2
a/χ

2
b ,

and calculated p-values for the corresponding F -distribution with (N − 1) degrees of freedom. The

same approach was used to fit Listeria comet tail data from Xenopus egg extracts (Figure S6), as

well as polymer mass decay curves obtained from stochastic simulations (Figures 3,4,S3-5).

Stochastic simulations of single-filament turnover

Chemical states of individual subunits in the filament were modeled using a time-varying one-

dimensional lattice ~S = Si. Here 1 < i < N are indices identifying individual subunits along the

filament length. Si give the state of subunit i; we designated to Si = 0 to be the absence of a

subunit, Si = 1 to be an internal subunit, Si = 2 to be a subunit at the pointed end, and Si = 3 to

be a subunit at the barbed end. In the case where a terminal subunit could adopt multiple states

with different dissociation rates, as in the case of a pointed-end subunit with and without Arp2/3

protection, we designated additional state values corresponding to these multiple states.

Chemical reactions that drive filament turnover were then modeled as time-dependent transfor-

mations on the lattice ~S. For instance, a subunit dissociation event at the filament pointed end j
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that occurs with time interval ∆t causes the following transformation:

Sj(t) = 3 → Sj(t+ ∆t) = 0 (A.38)

Sj−1(t) = 1 → Sj−1(t+ ∆t) = 3 (A.39)

Note that filaments are oriented such that their pointed ends occupy larger indices along the lattice.

Barbed-end subunit dissociation is modeled similarly. A change in the state of a filament end is

modeled by change in the state index. An Arp2/3 dissociation reaction at the pointed end j is

given by:

Sj(t) = 4→ Sj(t+ ∆t) = 3 (A.40)

Here we assume that the state indices 4 and 3 refer to pointed ends with and without Arp2/3

bound respectively. A severing event at location j, defined here to create an additional filament

barbed end and pointed end, causes the following transformation:

Sj(t) = 1 → Sj(t+ ∆t) = 3 (A.41)

Sj+1(t) = 1 → Sj+1(t+ ∆t) = 2 (A.42)

An internal bursting event, which we define to involve the instantaneous loss of Z contiguous

subunits centered on the initiating subunit j, results in:

Si(t) = 1→ Si(t+ ∆t) = 0 if (j − Z/2) < i < (j + Z/2) (A.43)

Furthermore, new filament ends generated as a result of filament bursting would be updated with

their correct indices (2 for pointed ends, and 3 for barbed ends). Reaction constants are described
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using a lattice of reaction rates ri = ρ(Si), where ρ maps the subunit state (Si) to the corresponding

rate constant. In our simulations, there exists only one possible reaction for a given subunit state

Si.

Using this description of the filament chemical state, we then simulated the turnover of an

individual filament as follows: We first generated an actin filament with random length x drawn

from an exponential distribution p(x) = λ exp (−λx), where λ = kc/v+. This initial filament length

distribution describes the regime where filaments elongate only transiently, rapidly terminating

growth shortly after nucleation (see for instance, Model A, Regime II). Following the Gillespie

algorithm, we then obtained the time interval to the next reaction from a exponential distribution,

where the rate is the sum of the rates of all reactions that can occur on the filament lattice

R =
∑

i ri. We then chose the specific subunit at which the chemical reaction occurred by drawing

from the following probability distribution pi = ri/R. The time was then incremented and the

new chemical state recorded. This process was then repeated until all subunits in the filament had

depolymerized (Si = 0 for all i). Individual filament trajectories obtained using this method were

then displayed as kymographs (Figures 3,4,S3 and S4). Here the y-axis gives time, and the x-axis

gives the filament state vector ~S, shown such that the presence of a subunit Si 6= 0 at given lattice

location is black.

To obtain polymer mass decay curves, single filament trajectories were simulated as described

above, then repeated multiple times (1000 times or more) for the same parameter value. Polymer
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mass decay curves were then obtained by sampling the polymer mass of this ensemble of the

simulated filaments at uniform time intervals. For display purposes, we re-scaled the time axis on

each of these curves individually such that one time-unit corresponded to the time required for the

polymer mass to decay to half its maximal value.

In stochastic simulations involving the turnover of a cross-linked actin network (A.3), we first

generated a random ensemble of filaments with exponentially distributed lengths, then arranged

them in a two-dimensional lattice (Figure S3A). Within the lattice, filaments were aligned horizon-

tally with pointed ends facing leftwards, and cross-linked to adjacent filaments at fixed intervals.

The entire lattice was then simulated using the Gillespie algorithm following the same procedure

described above. At each time point during the simulation, subnetworks of filaments connected

through cross-links were identified using a depth first search algorithm; filament subnetworks hav-

ing a subunit number larger than the critical value ε were then included in the polymer mass

measurements for that time point(Figure 3B). Polymer mass decay curves were then fit to an single

exponential using non-linear least squares fitting, and a measure of the goodness of fit χ2/N was

obtained (Figure 3C).

Imaging Listeria actin motility in Xenopus egg extract

Listeria were cultured and killed using iodoacetic acid treatment as described in [5]. Imaging

of Listeria motility in Xenopus extract was performed as previously described [5]. Briefly, 10µL
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Xenopus egg extract was mixed with 0.5µL iodoacetic acid-treated Listeria and 0.5µL tetram-

ethylrhodamine (TMR)-actin (final concentration = 1µM). 2µL of this mixture was then squashed

between a coverglass and a 22mm2 coverslip, and incubated for 30 minutes on ice. Imaging was

then performed on a widefield fluorescence microscope (Nikon E800) using a 60× 1.4 NA oil objec-

tive, and fluorescence images were acquired with a cooled-CCD camera (Hammamatsu ORCA-ER)

using image acquisition software (MetaMorph, Molecular Devices, Carlsbad, CA). Timelapse image

sequences of extract were then acquired in the rhodamine channel at 5s intervals for a minimum

duration of 600 seconds. Polymer mass decay in Listeria comet tails in extract were measured from

the timelapse image sequence as described above.

28



Supplementary Figures

Figure S1.

Actin filament elongation is restricted to the rear surface of moving Listeria . Listeria

actin comet tails were assembled in the presence of platelet extract and actin labeled with Alexa-

488 to mark the comet tails. The contents of the perfusion chamber were then replaced with fresh

platelet extract and actin labeled with rhodamine to mark the site of new actin assembly. The green

portion of the comet tail decreases in intensity as a function of distance from the bacterial surface

because it is depolymerizing. For clarity, the three channels [Alexa-488 actin (green), rhodamine-

actin (red) and DAPI (blue, marking the bacterial DNA)] are also shown individually as grayscale

images. Platelet extracts, prepared as described in [12], were used as Xenopus extracts undergo

gelation contraction in the perfusion chamber, precluding solution exchange.
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Figure S2.

Slow Arp2/3 dissociation followed by fast pointed-end shrinkage generates exponential

polymer mass decay. Single-filament trajectories for turnover involving Arp2/3-dissociation and

pointed-end shrinkage (Model B), showing Regime B.I, where Arp2/3 dissociation is fast compared

to subsequent depolymerization (Td � T−); B.II, where Arp2/3 dissociation and shrinkage occur

on similar time scales (Tffad ∼ T−); and B.III, where Arp2/3 dissociation is slow compared to

subsequent shrinkage (Td � T−). The analytical polymer mass decay curves (M̂(τ)) for these

different regimes are shown. Note that, in Regime B.I, polymer mass decays exponentially only

when growth is fast compared to shrinakge (α� 1, Model A, Regime II).
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Figure S3

Rapid dissociation of severed fragments worsens the exponential fit to the polymer

mass decay curve A) Temporal snapshots of a simulated cross-linked filament network undergoing

severing in conjunction with rapid dissociation of small severed fragments. Red horizontal lines

denote filaments that are part of the assembly. Filament barbed ends are oriented to the right.

Grey dots between filaments denote cross-links; black lines denote filaments belonging to a cross-

linked sub-network with size smaller than ε = 50. These filaments are considered to be dissociated

away from the assembly and are therefore not counted in polymer mass calculations. B) Polymer

mass decay curves for a severing-treadmilling model of turnover, shown for different values of ε.

An increase in ε does not affect the initial shoulder in the polymer mass decay, but leads to an

acceleration of polymer mass decay at later time points. C) Sum squared error (χ2/N of the

best fit of a simple exponential exp (−τ) to the simulated polymer mass decay curves shown in

B). Increasing ε worsens the fit of the polymer mass decay curve to a simple simple exponential.

All other parameters were kept constant in all simulations at v− = 10; 〈L〉 = v+/kc = 100;

s = ksv
2
+/k

2
cv− = 10.
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Figure S4

Severing also generates inflected polymer mass decay curves when it involves multiple

kinetic steps. A) Simulated polymer mass decay curve (blue circle) for treadmilling and a severing

reaction that involves two sequential kinetic steps that both occur with rate ks2 = 0.02. Best fits to

a simple exponential (black dashed line) and an inflected exponential (black solid line) are shown.

B) Simulated polymer mass decay curve (blue circles) for treadmilling together with a first-order

severing reaction (Model C, Regime II). Best fits to a simple exponential (black dashed line) and an

inflected exponential (black solid line) are shown. Here ks = 0.01. C) Sum-squared error (χ2/N) for

best fits to a simple exponential (dashed) and an inflected exponential (solid), shown for different

values of the second-order severing rate ks2. Other parameter values: 〈L〉 = 10, v− = 10.
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Figure S5.

Severing also generates non-exponential polymer mass decay in pathways involving

slow Arp2/3 dissociation. A)-C) Kymographs and polymer mass decay curves for turnover

with severing and Arp2/3 dissociation (Model D), shown for parameters corresponding to regime

D.I (A), D.II (B) and D.III (C). The value of σ = ksv
2
+/k

2
cv− is shown. Two representative

filament kymographs are shown for each set of parameters, with time on the x-axis and subunits

on the y-axis. Vertical bar = 100 subunits, and barbed ends point upwards. Polymer mass decay

curves (blue) represent ensemble average of simulated single-filament trajectories. For each plot,

kymographs and decay curves share the same time axis, which is individually scaled such that

one unit represents the mean time required for the polymer mass to decay to half its initial value

(τ1/2). Smooth curves represent best fits to a simple exponential (dashed), an inflected exponential

(solid), and a hyperbola (dotted). D) Sum-squared errors χ2/N for best fits to a simple exponential

(dashed), an inflected exponential (solid), and a hyperbola (dotted), shown for different values of

σ = ksv
2
+/k

2
cv−. In all simulations, ks was varied while all other parameters were kept constant at

v− = 20, kd = 0.001, 〈L〉 = v+/kc = 100, δ = v+kd/v−kc = 0.005. Values of σ used for simulations

in A)-C) are shown with vertical lines.
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Figure S6.

Exponential actin polymer mass decay in Listeria comet tails in Xenopus egg extract.

A) Timelapse fluorescence images of TMR-labeled actin in Listeria comet tails turning over in

Xenopus extract. Elapsed time in seconds is shown in upper left. Lower right image shows the

maximum intensity projection image of all frames in the field of view. Scale bar = 10 microns.

B) Representative curve of polymer mass decay in a Listeria actin comet tail in Xenopus egg

extract, showing mean and standard deviation (blue circles and bars). Best fits of this curve to

the following analytical curves are shown: single exponential (red), inflected exponential (green),

hyperbola (purple), and squared hyperbola (black). C) Ratio of sum-squared errors comparing best

fits of the following candidate decay curves to that of a simple exponential: an inflected exponential

(left), F = χ2
inf/χ

2
exp, 〈F 〉 = 8.2); a hyperbola (center), F = χ2

hyp/χ
2
exp, 〈F 〉 = 5.7); and a squared

hyperbola (right, F = χ2
s h/χ

2
exp, 〈F 〉 = 2.6). Data represent best fits to 14 Listeria tails. The

single exponential is a significantly better fit to experimental data compared to any of the other

three curves.
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Model Name Parameters Scaled Regimes M̂(t)
A. Treadmilling v+ barbed end growth rate α = v+/v− (I) α ∼ 1 slow barbed end elongation (1 + τ) exp (−τ)

v− pointed end shrinkage rate τ = kct (II) α� 1 rapid barbed end elongation exp (−τ/α)
kc barbed end capping rate

B. Arp2/3 dissociation/ kd Arp2/3 dissociation rate κ = kd/kc (I) κ� 1/α rapid Arp2/3 dissociation reduces to (A)
treadmilling v+, v−, kc α, τ (II) κ ∼ 1/α moderate Arp2/3 dissociation (1 + τ/α) exp (−τ/α)

(III) κ� 1/α slow Arp2/3 dissociation exp(−κτ)
C. Severing/ ks severing rate / subunit σ = ksv

2
+/k

2
cv− (I) σ � 1 rare severing exp (−τ/α)

treadmilling ε oligomer size τs = εkst (II) σ ≥ 1 frequent severing (1 + τs) exp (−τs)
v+, v−, kc α, τ

D. Severing/ v+, v−, kc, δ = v+kd/v−kc(� 1) (I) σ � δ infrequent severing exp (−κτ)
Arp2/3 dissociation/ kd, ks, ε τc = kct/ksv+ (II) δ � σ � 1 moderate severing 1/(1 + τc)
treadmilling α, τ , σ, τs (III) σ � 1 frequent severing (1 + τs) exp (−τs)

E. Bursting kb burst rate 〈L〉 = v+/kc (I) β > 〈L〉, Z > 〈L〉 large end-biased bursts exp (−βτb)
Z burst size τb = kbt (II) β < 〈L〉, Z < 〈L〉 small uniform bursts exp (−τb)
β end bias (III) β > 〈L〉, Z < 〈L〉 small end-biased bursts inflected
v+, kc (IV) β < 〈L〉, Z > 〈L〉 large uniform bursts 1/(1 + 〈L〉τb)2

Table 1: Summary of candidate turnover models. Table lists the different candidate turnover pathways analyzed using
mathematical modeling (column 1), their parameter definitions (columns 2-3), as well as their predicted polymer mass decay
curves (column 6) for different parameter regimes (columns 4,5).

1


	bpj2001mmc1 1
	final supporting info kueh
	supporting material 3
	figureS1
	figureS2
	figureS3
	figureS4
	figureS5
	figureS6
	modeltable


