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Materials & Methods 
Simulation Details 
Six initial starting conformations covering a range of 0 to 13 Å Cα RMSD to the crystal 
structure were drawn from replica exchange simulations in implicit solvent from Bill 
Swope and Jed Pitera at the IBM Almaden Research Center.1 These conformations were 
energy minimized using a steepest-descents algorithm in the Gromacs simulation 
package2 with the AMBER03 force field.3 They were then solvated in an octahedral box 
of dimensions 6.53 nm by 6.15 nm by 5.33 nm with 6,754 tip3p waters (with one Cl- 

atom to neutralize the charge). The relatively small box size was chosen based on 
previous studies showing that this size should give identical results to a much larger box.4 
This equivalence is supported by the fact that only ~0.004% of the conformations 
sampled interact with their periodic image. The solvent was equilibrated at 300 K with 
the protein coordinates held fixed. Finally, simulations were run on the Folding@home 
distributed computing platform using an MPI-enabled version of Gromacs4 at both 300 
and 370 K. These simulations used a 2 fs time step. They used a grid based neighbor list 
with a 0.7 nm cutoff that was updated every 10 steps. All h-bonds were constrained with 
the SHAKE algorithm.5 The system was held at constant volume during production runs 
but the equilibration simulations for each starting structure used a Parrinello-Rahman 
barostat6 at 1 bar with a time constant of 10 ps and a compressibility of 4.5*10-5 bar-1. 
Reaction field with a continuum dielectric of 78 was used for long-range electrostatics. A 
cutoff of 0.8 nm was used for both Coulombic and Van der Waals interactions. A switch 
at 0.7 nm was also used for Van der Waals interactions. The protein and solvent were 
coupled separately to a Nose-Hoover thermostat7,8 with an oscillation period of 0.5 ps. 
The linear center-of-mass motion of the system was removed every 10 steps. Random 
initial velocities were drawn from a Maxwell-Boltzmann distribution at 370 K. Protein 
conformations were stored every 50 ps. 
 
Most of the results described in this work are from the 370 K data as this should best 
correspond to the experimental temperature. The experimental T-jump study of lambda 
repressor was conducted at 334 K,9 just short of the melting temperature of 347 K. 
However, simulations with fixed-charge force fields are known to have poor temperature 
dependence. For example, simulations of systems like lambda repressor tend to over-
estimate melting temperatures by about 10%. 1 Thus, the experimental temperature of 334 
K will be best modeled by a simulation temperature of ~370 K.  
 
Structures were rendered with PyMOL. 
 
MSM Construction and Analysis 
We used the MSMBuilder package10,11 to construct a microstate model with 30,000 states 
and a coarse-grained macrostate model with 5,000 states. The microstate model was 
generated by clustering conformations stored at 5 ns intervals based on their Cα RMSDs 
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using the k-centers algorithm in MSMBuilder. The remaining data (50 ps spacing) was 
then assigned to these clusters and used to construct a transition count matrix (Cij = the 
number of observed transition from state i at time t to state j at time t+τ, where τ is the lag 
time of the model) and corresponding transition probability matrix (Pij = probability of 
transitioning from state i at time t to state j at time t+τ, where τ is the lag time of the 
model). The PCCA+ algorithm12-14 was then used to lump kinetically related microstates 
into 5,000 macrostates and these state definitions were used to construct macrostate level 
transition count/probability matrices. 
 
The lag time for each model was selected by computing the implied timescales of the 
model 

 

where µ is an eigenvalue, τ is the lag time, and k is a rate. This equation comes from the 
equivalence between discrete time MSMs and continuous time master equations (see 
Refs 15 and 16 for details). By plotting the implied timescales as a function of the lag time 
one can identify the lag time at which they begin to level-off (satisfy the Chapman-
Kolmogorov test), indicating that the model is Markovian.17 Based on this analysis, we 
chose a lag time of 5 ns for our microstate model (Figure S2), where all the kinetic 
analyses in this work were performed. 
 
To calculate the relaxation of the fraction folded as measured by some observable we 
used the procedure from Ref 4 to distinguish folded and non-native states and the 
procedure from Ref 11 to propagate the fraction folded. For example, with the 
experimental surrogate (Trp22-Tyr33 quenching) we calculated the average and standard 
deviation of the distance between these residues (Nativeave and Nativestd respectively) in 
native-state simulations started from a model of D14A based on the 1LMB crystal 
structure. Five random conformations were drawn from each state and used to calculate 
the average distance between these residues for that state (Stateave). A state was 
considered to be native if Stateave < Nativeave - Nativestd and non-native otherwise. The 
fraction-folded can then be calculated as the dot product between a vector with 1’s for 
folded states and 0’s for non-native ones with the state populations. To mimic an 
ensemble T-jump we used two starting populations: 1) all states equally populated and 2) 
all microstates in non-native macrostates (i.e. outside the most populated macrostate) 
equally populated. The relaxation of these starting ensembles was modeled by 
propagating the populations forward in time with the transition probability matrix and 
calculating the fraction folded at each time step. The same procedure was used for the 
fraction folded determined by the RMSD to the crystal structure, which was examined to 
determine whether or not the Trp22-Tyr33 distance could be measuring a more local 
rearrangement than full folding, as proposed for villin.4 Figure S10 shows that these two 
observables gave similar timescales for the full MSM and, while differences are apparent 
when the simulations started from β–sheet structures are ignored, the timescales do not 
appear to be substantially slower for the RMSD relaxation (Figure S11). The fast and 
slow timescales (τf and τs respectively) were obtained by fitting to the biexponential 
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where t is the time and A, B, and C are constants. Fitting to a single exponential requires 
three parameters. A biexponential fit only requires two extra parameters but improves the 
agreement between the model and raw data by about a factor of two. Adding a third 
exponential (two extra parameters beyond a biexponential) does not significantly improve 
the agreement between the model and data. For example, a single exponential fit to the 
relaxation of the RMSD has a root-mean-squared (RMS) deviation of 2.21*10-6 from the 
raw data while both biexponential and triexponential fits have an RMS deviation of 
1.38*10-6. The experimental results were also fit with biexponentials, so using them here 
facilitates comparing to experiment.  
 
The states participating most strongly in a given transition mode are specified by the 
corresponding left eigenvector (states with negative components are interconverting with 
those with positive components, and the magnitude of the eigenvector component gives 
the degree of participation).18 The highest flux pathways between sets of states were 
calculated as in Refs 19 and 20. Mean First Passage Times (MFPTs) between states and 
Pfolds were calculated as in Ref 21.  
 
Given our finite sampling, one can estimate the kinetic connectivity of a state by counting 
the number of edges connecting it to other states (effectively a way of counting the 
number of edges with probabilities above some threshold since all connections would be 
made with infinite sampling). 
 
Two residues are considered to be in contact if their Cα atoms are within 7 Å and they are 
at least 3 residues apart in the sequence. Native contacts are those formed in the energy-
minimized model based on the crystal structure 1LMB.22,23 The distance between two 
residues is the distance between the centroids of their side chains.  
 
Relative contact orders (RCOs) were calculated to quantify the degree of local versus 
non-local contacts in various states.24 The RCO is defined as 

 

where N is the total number of contacts, L is the number of residues in the protein, and 
 is the sequence separation (in residues) between contacting residues i and j. Here, 

two residues are considered to be in contact if their Cα atoms are within 7 Å regardless of 
their sequence separation. 
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Figure S1. A 1 second simulation generated with our microstate MSM demonstrates 
reversible folding on 10 millisecond timescales. (A) RMSD versus time with a histogram 
(probability distribution) of RMSDs on the right showing apparent two-state behavior 
despite the hub-like character we discuss in the main text. The thick black line and blue 
error-bars correspond to the mean and standard deviation of the RMSD over 2 
millisecond windows. (B) Plot of the simulation jumping back and forth between non-
native states and the native state, supporting our interpretation of part (A).
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Figure S2. Implied timescales for the full 370 K dataset. 
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Figure S3. Implied timescales for the 300 K dataset. 
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Figure S4. Implied timescales for ¾ of the 370 K dataset selected at random. 
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Figure S5. The helicity of each residue predicted from Agadir.25 The purple, numbered 
bars show where the five helices are (the extra purple block between helices 4 and 5 is a 
turn). 
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Figure S6. A coarse-grained view of the slowest transition with state sizes proportional to 
the free energy and arrow widths proportional to the flux (see key in figure). 
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Figure S7. Representative structures from a more detailed view of one pathway from the 
extended state in Figure 4E to the native state (Figure 4G) with pfold values corresponding 
to the probability of reaching state M before state A. The proportion of native contacts is 
also given in parentheses as an estimate of how native-like the topology is. At the 
beginning, helices 1 and 4 are already partially formed, consistent with their high 
intrinsic helical propensity (Figure S5). Then the chain quickly collapses (B). From this 
point on, helix 5 has a strong propensity to pack against the hydrophobic residues of helix 
4 (see the main text for more discussion of this point). Along with collapse, another 
segment of helix 1 forms (but there is a discontinuity between the two segments until 
later on) (B). Then helices 2 and 3 begin to form, with each forming ~1 helical turn (C-
E). Helix 3 then remains in a primarily coil state while helix 2 forms (F-I). Once helix 2 
is complete, the rest of helix 3 forms (J-M). Helix 4—which starts off tilted slightly 
downwards relative to helix 1—also flips a little upwards (J) and helix 1 straightens out 
more (though in the native macrostate there is still some flexibility around the middle of 
this helix) (K). The native topology (approximated by the proportion of native contacts 
formed) generally increases along the pathway but not completely monotonically, 
indicating it is not a perfect reaction coordinate for this path. The relatively high values 
even early in the pathway indicate the backbone quickly forms a native-like topology. 
Relative contact orders for each state are given in Table S2. 
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Figure S8. Free energy projections of the microstate MSM onto typical order parameters 
like the radius of gyration (Rg), the Cα RMSD to the crystal structure, and the distance 
between the Trp22 and Tyr33 residues. Units are kcal/mol. Differences between the 
panels highlight the difficulty in interpreting such projections. In particular, some 
projections appear two-state while others look more three-state. 
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Figure S9. Free energy projection of the microstate MSM onto Pfold and the distance 
between the Trp22 and Tyr33 residues. Units are kcal/mol. Obtaining projections onto 
kinetic order parameters like Pfold is greatly simplified with MSMs. In this case Pfold 
refers to the probability of reaching the crystallographic state before reaching the 
compact β-sheet state (i.e. the slow transition from Figures 3 and 4). Unlike the 
projections in Figure S8, this one hints that D14A may not be well described by a simple 
two- or three-state model or that the Trp22-Tyr33 distance is not a good reaction 
coordinate, since there are a broad range of Pfold values possible for a given Trp-Tyr 
distance. Indeed, analysis of the MSM reveals that D14A is best described by a native 
hub. 
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Figure S10. Relaxation of the fraction unfolded with different observables and initial 
population distributions. The thick black curves come from the MSM and the thin blue 
curves from biexponential fits to the MSM relaxation. The top row shows relaxation of 
the fraction unfolded measured by the Trp22-Tyr33 distance (A) starting from all states 
being equally populated and (B) starting from all non-native states being equally 
populated. The bottom row shows relaxation of the fraction unfolded measured by the Cα 
RMSD to the crystal structure (C) starting from all states being equally populated and (D) 
starting from all non-native states being equally populated. Fitting parameters are given 
in the figure (in units of microseconds). In this case, the fitting parameters are relatively 
independent of the observable and starting distribution. 
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Figure S11. Relaxation of the fraction unfolded with different observables and initial 
population distributions from an MSM built without the trajectories started from β-sheet 
structures. The thick black curves come from the MSM and the thin blue curves from 
biexponential fits to the MSM relaxation. The top row shows relaxation of the fraction 
unfolded measured by the Trp22-Tyr33 distance (A) starting from all states being equally 
populated and (B) starting from all non-native states being equally populated. The bottom 
row shows relaxation of the fraction unfolded measured by the Cα RMSD to the crystal 
structure (C) starting from all states being equally populated and (D) starting from all 
non-native states being equally populated. Fitting parameters are given in the figure (in 
units of microseconds). In this case the fitting parameters are more dependent on the 
observable, consistent with the experimental observation of probe dependent kinetics.  
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Figure S12. Two different models leading to biexponential relaxation. (A) Incipient 
downhill folding is like two-state folding but has a lower barrier. As a result, there is a 
reasonably sized population of proteins on top of the barrier that can slide downhill into 
the native state (N), leading to a fast phase (tf). There is also a population of proteins in 
the unfolded basin (U) that has a slower transition rate toe the native state (ts). (B) The 
native hub for D14A. This panel shows the 100 most populated macrostates with sizes 
proportional to their equilibrium populations. The native state and connections to it are 
colored green, highlighting the large number of connections to the native state. While the 
large number of native state connections does not prove that it is a kinetic hub, it is a hint 
that is confirmed by comparing the distribution of MFPTs to the native state and between 
non-native states.
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Figure S13. Projection of the free energy onto pfold (A) from the compact β-sheet state in 
Figure 4A to the native state in Figure 4H, (B) from the extended state in Figure 4E to the 
crystallographic state in Figure 4H, and (C) from the extended state in Figure 4E to the 
model native state in Figure 4G. None are purely downhill, though some may be 
consistent with incipient downhill folding (i.e. have sufficiently low barriers that there is 
a reasonable population at the barrier top that can fold in a downhill manner in addition to 
activated folding across the barrier). In particular, the two projections with the extended 
structure from Figure 4E as a starting point have much lower barriers (i.e. are more 
consistent with incipient downhill folding) than when the compact β-sheet structure from 
Figure 4A is used as a starting point. We also note that the presence of parallel pathways 
and a kinetic hub may mean that no single order parameter can serve as a good reaction 
coordinate. For example, the compact β-sheet structures often have pfold values near one 
when using the extended and crystal structures as starting and end points respectively 
(panel B). This happens because β-sheet structures can fold through other pathways. Even 
though going through this particular extended structure is one of the most probable 
pathways, the sum of the probabilities through other pathways is still higher than the 
probability of this particular path. 
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Figure S14. Distributions of mean first passage times (MFPTs) between sets of 
microstates (A) without weighting the distribution and (B) weighting each MFPT by the 
equilibrium probability of the starting state. The solid line is the distribution of MFPTs 
from non-native to native microstates and the dashed line is the distribution of MFPTs 
between non-native states. The average MFPT from non-native states to native ones is 
about 10 times faster than that between non-native states in (A) and the difference is even 
greater in (B). This difference is smaller than in previously studied systems,26 but likely 
because of the higher temperature used in this work. Native microstates were defined as 
those in the most populated macrostate. All other microstates were considered non-
native. 
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State RCO 
A 0.17 
B 0.11 
C 0.11 
D 0.07 
E 0.05 
F 0.06 
G 0.07 
H 0.08 
Table S1. Relative contact orders (RCOs) of the states from Figure 4 show that the 
contacts formed in the β-sheet states are much more non-local than those formed once the 
chain extends and then begins to collapse into native-like states. 
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State RCO 
A 0.05 
B 0.05 
C 0.05 
D 0.05 
E 0.07 
F 0.07 
G 0.05 
H 0.05 
I 0.05 
J 0.05 
K 0.05 
L 0.07 
M 0.07 
Table S2. Relative contact orders (RCOs) of the states from Figure S7 show that the 
contacts formed throughout folding from an extended state are relatively local.
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