Supporting Information

Engineering Encodable Lanthanide Binding Tags (LBTs) into Loop Regions of Proteins

Katja Barthelmes[†], Anne M. Reynolds[‡], Ezra Peisach[#], Hendrik R.A. Jonker[†], Nicholas DeNunzio[#], Karen N. Allen[#]*, Barbara Imperiali[‡]*, Harald Schwalbe[†]*

Contribution from the Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular
Magnetic Resonance, Johann Wolfgang Goethe-University of Frankfurt, Max-von-Laue-Strasse 7,
60438 Frankfurt, Germany, Departments of Chemistry and Biology, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 and Department of
Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215.

Primer sequence for cloning of IL1β-L2

For_IL1b(Bam,TEV): 5'-CGGGATCCGAGAATTTGTATTTTCAGG-3'

Rev_IL1b(loop2): 5'-CCTTCAATCCAGCCATCGTTGTTGGTATCAATATAACCTTTCAACACG CAGGACAGGTAC-3'

For_IL1b(loop2): 5'-CCAACAACGATGGCTGGATTGAAGGCGATGAACTGTATAAGCCCACT CTACAGCTGGAGAG-3'

Rev_IL1b(Xho): 5'-CCGCTCGAGTTAGGAAGACACAAATTG-3'

Primer sequence for cloning of IL1β-L1 and IL1β-L3 via Site-Directed Mutagenesis of IL1β-L2

IL1β-L1

IL1bL1_D1: 5'-GTCCTGCGTGTTGaaagatGGTTATATTGATACCAAC-3'

IL1bL1_D1-r: 5'-GTTGGTATCAATATAACCATCTTTCAACACGCAGGAC-3'

IL1bL1_D2: 5'-GAAGGCGATGAACTGTATgataagCCCACTCTACAG-3'

IL1bL1_D2-r: 5'-CTGTAGAGTGGGCTTATCATACAGTTCATCGCCTTC-3'

IL1β-L3

IL1bL1_K1: 5'-CTGTCCTGCGTGTTGGGTTATATTGATACCAACAAC-3' II1bL1 K1-r: 5'-GTTGTTGGTATCAATATAACCCAACACGCAGGACAG-3'

IL1bL1 K2: 5'-GAAGGCGATGAACTGTATCCCACTCTACAGCTGG-3'

IL1bL1_K2-r: 5'-CCAGCTGTAGAGTGGGATACAGTTCATCGCCTTC-3'

Primer sequence for cloning of IL1β-R2

For IL1b(Bam,TEV): 5'-CGGGATCCGAGAATTTGTATTTTCAGG-3'

Rev IL1b(loop3): 5'-CCTTCAATCCAGCCATCGTTGTTGGTATCAATATAACCTTTGGTCCCT CCCAGGAAGAC-3'

For IL1b(loop3): 5'-CCAACAACGATGGCTGGATTGAAGGCGATGAACTGTATCAGGATATA ACTGACTTCACC -3'

Rev IL1b(Xho): 5'-CCGCTCGAGTTAGGAAGACACAAATTG-3'

Primer sequence for cloning of IL1β-R1 and IL1β-R3 via Site-Directed Mutagenesis of IL1β-R2

IL1β-R1

For IL1b(Gly1): 5'-CTGGGAGGGACCAAAGGCGGTTATATTGATACC-3' Rev IL1b(Gly1): 5'-GGTATCAATATAACCGCCTTTGGTCCCTCCCAG-3' For IL1b(Gly2): 5'-GATGAACTGTATGGCCAGGATATAACTGACTTCAC-3' Rev IL1b(Gly2): 5'-GTGAAGTCAGTTATATCCTGGCCATACAGTTCATC-3'

IL1β -R3

For IL1b(Lys): 5'-GTCTTCCTGGGAGGGACCGGTTATATTGATACC-3' Rev IL1b(Lys): 5'-GGTATCAATATAACCGGTCCCTCCCAGGAAGAC-3' For IL1b(Gln): 5'-GGCGATGAACTGTATGATATAACTGACTTCACC-3' Rev IL1b(Gln): 5'-GGTGAAGTCAGTTATATCATACAGTTCATCGCC-3'

Primer sequence for site-directed mutagenesis of all IL1β-LBT proteins to remove Gly from TEV site

For_IL1b(Met): 5'-GAGAATTTGTATTTTCAGATGGCACCTGTACGATCGC-3'

Rev_IL1b(Met): 5'-GCGATCGTACAGGTGCCATCTGAAAATACAAATTCTC-3'

Primer sequence for cloning of IL1β-S1, -S2 and -S3

For_IL1b(Bam, TEV): 5'-CGGGATCCGAGAATTTGTATTTTCAGGGCATGGCACCTGTACGAT CGCTGAAC-3'

Rev_IL1b(Xho): 5'- CCGCTCGAGTTAGGAAGACACAAATTGCATGGT-3'

Expression of GST-TEV-IL1β-LBT by Auto-induction

Starting from an overnight culture in 2.5 mL minimal non-inducing media, BL21-CodonPlus(DE3)-RIL expressing the desired GST-fusion protein were grown in 500 mL complex auto-inducing media (ZYM-5052) and shaken for 24 h at 37 °C. The cells were harvested by centrifugation and the final pellets were stored at -80°C until needed.¹

Expression and purification of ¹⁵N-GST-TEV-IL1β-LBT by Auto-induction.

Starting from an overnight culture in 2.5 mL minimal non-inducing media, BL21-CodonPlus(DE3)-RIL expressing the desired GST-fusion protein were grown in 500 mL minimal autoinducing media (P-5052) and shaken for 24 h at 37 °C. The cells were harvested by centrifugation and the final pellets were stored at -80°C until needed.¹

All purification was performed at 4 °C. The cell pellet from the 500 mL growth was thawed and resuspended in a lysis buffer (1 x PBS, 100 mM EDTA, 10% Glycerol, 1% Triton X-100, 5 mM β -mercaptoethanol (β -ME), 1 mg/mL Hen egg white lysozyme, 1000 x dilution of Protease Inhibitor Cocktail III (Calbiochem)) and incubated for 20 minutes. Cells were lysed by sonication, and cellular

debris was pelleted by centrifugation. Supernatant was incubated over night with Glutathione-sepharose resin (Amersham Biosciences), washed extensively with PBS, and the GST-construct was then eluted using a 10 mM glutathione solution in 50 mM Tris (pH 8.0) buffer containing the same protease inhibitor cocktail. Elution fractions were analyzed by 12% SDS-PAGE. Purified protein was stored at 4°C until cleavage by mTEV protease.

Cleavage by mTEV protease and purification of GST-TEV-IL1β-LBT proteins.

The cleavage reactions were conducted in 50 mM Tris, 150 mM NaCl, 0.5 mM EDTA and 10mM β -ME using 20 μ L recombinant mTEV protease per mg protein. The reaction mixtures were incubated overnight at room temperature and analyzed on 12%-SDS-Page gels for completeness.

The cleaved proteins were purified using size exclusion chromatography. A HiLoad 16/60 Superdex-75 column was equilibrated with 10 mM HEPES, 100 mM NaCl, 5 mM β -ME at pH 7. The protein was loaded onto the column and after a 50-minute delay, 1mL fractions were collected for 40 minutes at a flow rate of 1 mL/min. The absorbance at 280 nm was monitored and fractions corresponding to the two peaks were collected and analyzed on 12% SDS-Page gels (Figure S1).

Construct	LBT between loop residues	Expression yields out of 500 mL ¹⁵ N-AI minimum culture		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
II1β - <mark>S1</mark> II1β - <mark>S2</mark>	53-54 52-55	5 mg 3 mg	50 37.5	111	-	GST	T-TE	V-11	L1β∙	-R2								
II1β - 83	51-56	4 mg	25	-				-	G	ST	,							
II1β -L1	75-76	2 mg	20				-	_	-	-	_		-	_	-		IL	1β-R2
1116-L2	74-77	3 mg			-				-									
II1β -L3	73-78	1 mg																
II1 β - <mark>R1</mark>	139-140	2 mg																
Π1β-R2	138-141	8 mg																
Π1 β - <mark>R3</mark>	137-142	3 mg																

Figure S1 Expression yields of IL1 β -S, -L and –R series (left) and a representative 12 % SDS page gel of IL1 β -R2 stained with Coomassie brilliant blue (right). Lane 1: protein mass ladder; lane 2: GST-TEV-IL1 β -R2; lane 3 to 15: Fractions of purified IL1 β -R2 by Size exclusion chromatography.

Expression of IL1β-S1 for crystallization

For expression of the IL1 β -S1 constructs, a single colony was transferred to 2mL of ZYP-0.8g media containing 50 µg/ml of ampicillin and grown at 37 °C until turbid. The culture (200µl) was then transferred to 400 ml of ZYM5052 containing 50 µg/ml of ampicillin and grown at 25 °C overnight until the OD600 reached a plateau (typically OD600 = 7-9). Cells were harvested by centrifugation at 8000 x g for 20 min, the pellet resuspended in 50ml 15 mM Tris pH 8.0, centrifuged at 4000 x g, and the supernatant removed and the pellet frozen overnight at -80 °C.

The frozen cell pellet was resuspended in 50 mL lysis buffer (50 mM Tris pH 8.0, 1 mM EDTA, 1 mM PMSF, 1 mM BME) and stirred on ice. A spatula tip of DNAse I and lysozyme were added and stirring continued for 45 min. Cells were sonicated 3 x 30 seconds and the suspension centrifuged 145 x kg for thirty min. and the supernatant retained. Ammonium sulfate cuts of the supernatant were made and protein that precipitated between 40-75% ammonium sulfate was pooled and dialyzed against 1M NH₄SO₄ in 50 mM Tris pH 7.5, 1mM BME (Buffer A), loaded on a HR 16/10 butyl sepharose column and eluted with a 15 column volume gradient from 1M to 0 M of NH₄SO₄ in Buffer A. Fractions containing protein were pooled and precipitated in 75% ammonium sulfate to reduce volume. The precipitate was resuspended in 5 ml Buffer A and dialyzed against the same buffer. The sample was loaded on a 5 ml HiTrap Q HP 5ml column and eluted with a 20 column volume gradient from 0 M to 1 M sodium chloride in Buffer A. Fractions containing IL1β-SI (approximately 95% pure) were pooled, dialyzed against 50mM Hepes pH 7.5, 150mM NaCl, concentrated in an Amicon concentrator to 0.5 ml and loaded on a HiPrep 26/60 Sephacryl S-200 column and eluted at 1.5ml/min with 50mM Hepes pH 7.5, 150 mM NaCl. Eluted protein was a single band on an SDS-PAGE. Protein fractions were pooled and dialyzed against 20 mM Hepes pH 7.3 and stored at 4 °C.

Receptor-binding assay.

In a microspin column (Biorad) 50 μ L glutathione sepharose beads (GE Healthcare Biosciences, max binding capacity = 500 μ g) were loaded with 1.0 mg of the appropriate GST fusion protein and incubated with the resin with gentle agitation at 4°C for 2 hours. 125 μ L (200 μ g/mL) lyophilized s-IL-1R₁ (R&D Systems) was then added to the beads along with 375 μ L PBS+0.1% BSA, incubated overnight at 4°C (Figure S2).

Figure S2 GST pull-down assay for s-IL-1R₁ receptor binding.

After extensive washing, receptor capture by the GST-tagged IL1 β -LBT was analyzed by SDS-PAGE and Western blot. Control experiments were performed to ensure that the receptor would bind to GSTtagged IL1 β without an LBT. Two negative controls were also performed - one in which the beads were incubated only with PBS buffer prior to addition of the receptor, and one in which the beads were incubated with GST prior to receptor-binding. These experiments established that there was no nonspecific binding of the receptor to either beads or GST. The results for receptor-binding assays for the three loop series confirm that the receptor does bind to all of the constructs as analyzed by SDS-PAGE and an anti-s-IL-1R₁ Western blot (Figure S3)

Figure S3 Receptor-binding assay results, with 12% SDS-Page gels (left) and anti-s-IL-1R₁ Western blots (right). (a) Control binding studies. Nonspecific binding was not observed. Assay with (b) GST-IL1 β -S1, -S2 and S3, (c) GST-IL1 β -L1, -L2 and L3 and (d) GST-IL1 β -R1, -R2 and -R3.

Number of bound water molecules in the coordination sphere of terbium.

Figure S4 (a) Luminescence decay measurements in varying concentrations of H_2O and D_2O . Representative data shown for IL1 β -L1. (b) Values of τ (determined from fits of data in (a)) plotted against the percentage of H_2O , allowing extrapolation to 100% D_2O .

	Resi	due	¹ H [ppm]	¹⁵ N [ppm]		R	esidue		¹ H [ppm]	¹⁵ N [ppm]	
A	A A	la 1				S	Ser	43	9,23	115,64	
I	P Pi	·o 2	2			М	Met	44	9,69	132,12	
١	/ V	al 3	8,15	119,44		S	Ser	45	8,95	121,24	
F	R A	rg 4	9,02	128,30		F	Phe	46	8,53	123,53	
5	5 S	er 5	8,42	118,91		V	Val	47	7,42	118,23	
Ι	L	eu 6	9,14	122,76		Q	Gln	48	8,61	120,22	
Ν	A A	sn 7	8,89	121,00		G	Gly	49	8,44	112,29	
(C C	ys 8	9,68	118,10		Е	Glu	50	8,58	121,76	
]	ΓТ	hr 9	8,99	109,67		Е	Glu	51	8,62	123,15	
Ι	L	eu 10	9,50	120,83		S	Ser	52	8,49	117,28	
F	R A	rg 11	8,68	119,78	a)	Ν	Asn	53			
Γ) A	sp 12	8,51	120,43		D	Asp	54	8,57	116,06	
S	5 S	er 13	7,55	114,85		Κ	Lys	55	7,63	119,03	
() G	ln 14	8,09	120,77	a)	Ι	Ile	56			
() G	ln 15	5 8,48	111,25		Р	Pro	57			
a) k	K L	ys 16	Ď			V	Val	58	10,10	118,10	
a) <u>S</u>	5 S	er 17	1			А	Ala	59	8,73	120,83	
Ι	L	eu 18	8 8,90	122,40		L	Leu	60	10,61	124,40	
١	/ V	al 19	8,85	115,55		G	Gly	61	8,33	110,19	
Ν	1 M	let 20	8,77	120,71		L	Leu	62	8,29	121,76	
S	5 S	er 21	8,71	120,21		Κ	Lys	63			
(G G	ly 22	8,20	112,08		Е	Glu	64	9,01	118,98	
I	P P	ro 23	5			Κ	Lys	65	7,62	115,40	
У	ΥT	yr 24	8,11	110,63	a)	Ν	Asn	66			
I	E G	lu 25	5 7,24	119,80		L	Leu	67	6,89	115,79	
I	L	eu 26	6 8,70	123,13		Y	Tyr	68	9,23	121,61	
k	C L	ys 27	9,25	119,52		L	Leu	69	8,54	122,02	
A	A A	la 28	3 7,67	119,02		S	Ser	70	9,22	116,09	
I	L	eu 29	9,49	126,03		С	Cys	71	8,48	119,76	
ŀ	Η	is 30	10,22	122,28		V	Val	72	8,88	117,36	
Ι	L	eu 31	8,50	126,39		L	Leu	73	8,63	123,92	
C) G	ln 32	9,00	120,32		Κ	Lys	74	8,28	126,51	
(G G	ly 33	8,85	109,82		D	Asp	75	9,37	128,30	
() G	ln 34	8,98	122,24		D	Asp	76	8,57	109,84	
Ι) A	sp 35	5 8,00	119,18		Κ	Lys	77	7,76	120,40	
Ν	1 M	let 36	5 7,69	118,44		Р	Pro	78			
I	E G	lu 37	8,16	117,67		Т	Thr	79	8,84	120,09	
() G	ln 38	8 8,00	117,24		L	Leu	80	8,97	127,17	
() G	ln 39	7,57	117,32		Q	Gln	81	9,78	126,66	
١	/ V	al 40	8,40	123,06		L	Leu	82	8,57	122,45	
١	/ V	al 41	7,80	123,97		Е	Glu	83	9,23	124,07	
I	F P	he 42	9,68	127,64		S	Ser	84	8,83	121,73	

Table S1. ¹H and ¹⁵N Chemical Shift values for ¹⁵N-IL1 β – R2 at pH 7 and 20 °C, 10 mM HEPES, 100 mM NaCl, 10 μ M DSS.

	Residue		¹ H [ppm]	¹⁵ N [ppm]		Residue		¹ H [ppm]	¹⁵ N [ppm]	
a) V	Val	85			А	Ala	127	8,24	121,18	
D	Asp	86	8,21	122,14	Е	Glu	128	8,57	117,44	
Р	Pro	87			Ν	Asn	129	8,13	114,04	
K	Lys	88	8,48	117,31	М	Met	130	8,98	118,16	
Ν	Asn	89	7,80	114,86	Р	Pro	131			
Y	Tyr	90	7,29	116,49	V	Val	132	8,08	125,86	
Р	Pro	91			F	Phe	133	8,81	125,25	
K	Lys	92	7,27	116,54	L	Leu	134	9,03	122,55	
K	Lys	93	8,37	119,69	G	Gly	135	9,40	115,44	
K	Lys	94	7,93	118,23	G	Gly	136	8,77	110,73	
Μ	Met	95	7,69	122,70	Т	Thr	137	7,76	114,06	
Е	Glu	96	9,23	122,87	Κ	Lys	138	8,33	124,14	
K	Lys	97	8,29	121,91	G	Gly	139	8,09	109,69	
R	Arg	98	7,99	114,41	Y	Tyr	140	8,07	118,91	
F	Phe	99	7,92	116,70	Ι	Ile	141	9,00	123,15	
V	Val	100	7,50	117,99	D	Asp	142	8,73	124,71	
F	Phe	101	9,90	127,36	Т	Thr	143	8,14	120,92	
Ν	Asn	102	10,47	121,32	Ν	Asn	144	8,45	115,75	
K	Lys	103	9,41	127,84	Ν	Asn	145	8,14	115,51	
Ι	Ile	104	9,35	134,28	D	Asp	146	8,09	115,38	
E	Glu	105	8,56	127,48	G	Gly	147	9,77	111,24	
Ι	Ile	106	8,62	125,96	W	Trp	148	7,98	120,03	
Ν	Asn	107	9,42	126,43	Ι	Ile	149	9,27	131,40	
Ν	Asn	108	8,92	110,35	Е	Glu	150	8,85	109,12	
K	Lys	109	8,05	120,49	G	Gly	151	9,29	127,24	
L	Leu	110	9,40	122,31	D	Asp	152	8,32	118,35	
E	Glu	111	8,74	118,58	Е	Glu	153	8,65	127,27	
F	Phe	112	10,46	119,72	L	Leu	154	7,20	115,57	
Е	Glu	113	8,82	126,28	Y	Tyr	155	7,34	119,58	
S	Ser	114	9,24	122,11	Q	Gln	156	8,51	122,97	
А	Ala	115	8,18	128,62	D	Asp	157	7,91	122,09	
Q	Gln	116	8,00	117,24	Ι	Ile	158	8,34	122,31	
F	Phe	117	7,44	117,17	a) T	Thr	159			
Р	Pro	118			a) D	Asp	160			
Ν	Asn	119	10,40	114,33	F	Phe	161	9,44	117,54	
W	Trp	120	8,19	120,46	Т	Thr	162	9,64	110,00	
Y	Tyr	121	9,49	119,73	М	Met	163	8,78	121,57	
a) I	Ile	122			Q	Gln	164	8,49	123,96	
a) S	Ser	123			F	Phe	164	8,85	123,75	
Ť	Thr	124	9,11	110,25	V	Val	166	8,12	123,34	
S	Ser	125	9,62	114,01	S	Ser	167	8,52	119,94	
Q	Gln	126	8,88	122,26	S	Ser	168	8,12	122,98	

Table S1. (continued)

a) The amino acid backbone resonances of these amino acids could not be assigned in the ¹H-¹⁵N-HSQC spectra.

Figure S5. Overlay of the 2D-¹H- ¹⁵N HSQC spectra of IL1 β -R2 (red) and wt-IL1 β (black) at pH 7 and 20 °C, 10 mM HEPES, 100 mM NaCl, 10 μ M DSS. Peaks originated from the LBT are shown in green.

Figure S6. (a) Scatter plot showing the correlation between observed ${}^{1}D_{HN}$ dipolar shifts [Hz] and those back-calculated with the program PALES² based on the crystal structure of IL1β (PDB entry 9ILB) for 15 N-IL1β-R2 using Tb³⁺ or Tm³⁺ as paramagnetic lanthanide ion. The correlation coefficient is 0.93 or Tb³⁺ and 0.92 for Tm³⁺. The protein concentration was 0.5 mM. NMR buffer composition was 10 mM HEPES (pH 7), 100 mM NaCl at 36 °C. (b) RDC histogram for 15 N-IL1β-R2 loaded with Tb³⁺ compared with that for 15 N-IL1β-R2 loaded with Tm³⁺. (c) Overlay of the refined model of IL1β-R2 (green) with the reference crystal structure 9ILB (red). The RMSD of both structures is 0.398 Å. The modelling was performed using the crystal structure of IL1β (PDB entry 9ILB) and the previously optimized Δχ-tensor parameters.

		PCS [pp	m]		PCS [pp	m]			PCS [pp	mJ		PCS [ppi	nJ
R2		Tb (III)	Tm (III)		Tb (III)	Tm (III)			Tb (III)	Tm (III)		Tb (III)	Tm (III
							17.5.5	IDI		0.004	• •		0.056
AI							K55	HN	0.220	-0.294	N	0.217	-0.256
2	IDI	0.000	0.050		0.100	0.100	156	HN	0.320		IN	0.317	
V 3	HN	0.088	-0.059	N	0.126	-0.129	P5/		0.0(7			0.107	
K 4	HN	0.102	-0.079	N	0.107	-0.114	V58	HN	0.267	-0.211	N	0.196	-0.210
85	HN	0.104	-0.059	N	0.170	-0.105	A59	HN	0.194	-0.134	N	0.199	-0.168
L6	HN	0.121	-0.081	N	0.098	-0.063	L60	HN	0.200	-0.146	N	0.174	-0.110
N7	HN		-0.050	N		-0.053	G61	HN	0.136	-0.093	N	0.166	-0.099
C8	HN	0.081	-0.061	N	0.125	-0.047	L62	HN	0.104	-0.065	Ν	0.105	0.006
19	HN	0.064	-0.038	N	0.083	-0.034	K63						
L10	HN	0.071	-0.054	N	0.152	-0.054	E64	HN	0.051	-0.023	N	0.058	-0.014
R11	HN	0.110	-0.081	N	0.092	-0.106	K65	ΗN	0.053		Ν	0.076	
D12	HN		0.043	N		0.055	N66						
S13							L67	HN	0.080		Ν	0.107	
Q14							Y68	HN	0.119	-0.075	Ν	0.129	-0.078
Q15	HN	-0.020		Ν	-0.086		L69	HN	0.169	-0.116	Ν	0.197	-0.114
K16							S70	HN	0.204	-0.140	Ν	0.195	-0.181
S17							C71						
L18							V72	HN	0.284	-0.199	Ν	0.232	-0.223
V19	HN	-0.013	0.028	Ν	0.015	0.019	L73	HN		-0.155	Ν		-0.219
M20							K74	HN	0.254		Ν	0.223	
S21	HN	0.001		Ν	0.026		D75	HN	0.122	-0.047	Ν	0.145	-0.099
G22	HN	-0.009	0.045	Ν	0.022	0.044	D76	HN	0.157	-0.086	Ν	0.091	-0.100
P23							K77	HN	0.270	-0.175	Ν	0.351	-0.248
Y24	HN	0.031	0.015	Ν	0.004	-0.009	P78						
E25	HN	0.043	0.008	Ν	0.097	0.017	T79	HN		-0.247	Ν		-0.240
L26	HN	0.083	-0.034	Ν	0.092	0.001	L80	HN	0.340	-0.236	Ν	0.312	-0.271
K27	HN	0.003	0.019	Ν	0.066	0.055	Q81	HN	0.225	-0.157	Ν	0.142	-0.173
A28	HN	-0.034	0.130	Ν	-0.067	0.039	L82	HN	0.126	-0.071	Ν	0.141	-0.132
L29	HN	-0.130		Ν	-0.192		E83	HN	0.119	-0.075	Ν	0.108	-0.070
H30	HN	-0.313	0.246	Ν	-0.328	0.104	S84			-0.045	Ν		-0.021
L31	HN	-0.186	0.143	Ν	-0.259	0.109	V85						
Q32	HN	-0.192	0.152	Ν	-0.226	0.143	D86	HN	0.079	-0.048	Ν	0.121	-0.021
G33	HN	-0.139	0.102	Ν	-0.142	0.078	P87						
Q34							K88	HN	0.053	-0.020	Ν	0.054	-0.114
D35	HN	-0.124	0.094	Ν	-0.142	0.080	N89	HN	0.064		Ν	0.031	
M36	HN	-0.098	0.083	Ν	-0.071	0.079	Y90	HN	0.073		Ν	0.133	
E37	HN	-0.085	0.063	Ν	-0.040	0.019	P91						
O38	HN	-0.074	0.052	Ν	-0.089	0.064	K92						
Q39	HN	-0.038	0.040	Ν	-0.013	0.055	K93	HN	0.088	-0.075	Ν	0.089	-0.049
V40	HN		0.004	Ν		-0.053	K94	HN	0.106	-0.085	Ν	0.096	-0.098
V41	HN	0.031	-0.014	Ν	0.027	-0.008	M95	HN	0.140	-0.105	Ν	0.127	-0.082
F42	HN	0.080	-0.056	Ν	0.144	-0.060	E96	HN	0.144	-0.106	Ν	0.168	-0.106
S43	HN	0.113	-0.074	Ν	0.162	-0.058	K97	HN	0.166	-0.132	Ν	0.220	-0.192
- M44	HN	0.127	-0.094	N	0.161	-0.076	R98	HN		-0.152	N		-0.199
S45	HN		-0.108	N		-0.149	F99	HN	0.201	-0.152	N	0.153	-0.177
F46	HN		-0.098	N		-0.125	V100	HN	0.249	-0.191	N	0.306	-0 157
V47	HN		-0.137	N		-0.160	F101	HN	0.281	-0.217	N	0.312	-0.282
048	HN	0 149	0.107	N	0 1 7 0	0.100	N102	HN	0.426	-0 343	N	0.369	-0 339
~ 10 G49	HN	0.175	-0 139	N	0.188	-0.161	K103	HN	0 342	-0.269	N	0.340	-0.362
547 F50	HN	0.215	-0.175	N	0.213	-0.184	1104	HN	0.469	-0.361	N	0.414	-0.362
E51		0.215	0.175	N	0.104	0.104	E104	LIN	0.417	0.301	N	0.352	0.300
651 852		0.208	-0.207	IN N	0.104	-0.507	1102	LIN	0.41/	-0.510	IN NI	0.333	-0.437
552 NE2	ПN	0.238	-0.203	IN	0.287	-0.190	1100 N107	ΠIN	0.4/8	-0.383	IN	0.430	-0.453
1133			0.040		0.226	0.222	N107	IDJ	0.200		ът	0.207	

Table S2. PCSs of backbone 1 H and 15 N of IL1 β -R2.

R2	PCS [pr Tb (III)	om] Tm (III)		PCS [pr Tb (III)	om] Tm (III)			PCS [p] Tb (III)	pm] Tm (III)		PCS [pp Tb (III)	m] Tm (III)
NIAO INI	0.200		м	0.007		D145						
NIU8 HN	0.299	0.221	N	0.287	0.220	D145	INI	0.471	0.225	м	0.405	0.271
K109 HN	0.390	-0.321	IN N	0.383	-0.320	F140 T147	HIN	0.4/1	-0.555	IN N	0.405	-0.271
EIII IIN		-0.349	IN		-0.321	M147	HN	0.178	-0.170	N	0.191	-0.229
EIII EII2 HN	0.578		N	0.479		01/9	HN	0.144	-0.042	N	0.102	-0.017
F112 HN	0.570	-0.421	N	0.550	-0.439	E150	HN	0.077	-0.042	N	0.000	-0.017
S114	0.550	0.421	1	0.550	0.457	V151	HN	0.020	-0.036	N	0.118	-0.031
A115 HN	0 392	-0.318	N	0 397	-0.311	\$152	III (0.002	0.050	11	0.110	0.001
0116 HN	0.416	0.010	N	0.391	0.011	S153	HN		-0.050	Ν		-0.089
F117 HN	0.478	-0.381	N	0.511	-0.373							
P118												
N119 HN	0.811	-0.695	Ν	0.875	-0.773							
W120 HN	0.856		Ν	0.937								
Y121 HN	0.983	-0.811	Ν	0.804	-0.729							
I122 HN	0.599	-0.505	Ν	0.621	-0.534							
S123												
T124												
S125 HN	0.010	-0.025	Ν	0.101	-0.109							
Q126												
A127 HN		0.554	Ν		0.576							
E128 HN		0.534	Ν		0.365							
N129 HN	-0.313		Ν	-0.341								
M130 HN	-0.245	0.208	Ν	-0.204	0.210							
P131												
V132 HN	0.098	-0.039	N	0.102	-0.085							
F133 HN	0.357	-0.259	N	0.332	-0.242							
LI34 HN	0.537	-0.415	N	0.571	-0.425							
GI35 HN	0.866	-0.695	Ν	0.888	-0./6/							
G130 T127												
K138												
C												
v v												
I												
D												
Т												
Ν												
Ν												
D												
G												
W												
I												
Ε												
G												
D												
E												
L												
Y												
G139												
G140												
Q141 D142												
D142 1173												
1145 T144												
1144												

Table S2 (continued). PCSs of backbone 1 H and 15 N of IL1 β -R2.

2D ¹H-¹⁵N-HSQCs of IL1β-LBT

Figure S7. 2D-¹H-¹⁵N-HSQC spectra comparing (left) ¹⁵N-IL1 β -R1 and R3 loaded with diamagnetic Lu (III) with (right) ¹⁵N-IL1 β -R1 and R3 loaded with paramagnetic Tb (III). Spectra for IL1 β -R1 were recorded at pH 7 and 20 °C in 10 mM HEPES, 100 mM NaCl and 10 μ M DSS. Spectra for IL1 β -R3 were recorded at pH 7 and 20 °C in 10 mM Tris, 100 mM NaCl and 10 μ M DSS due to precipitation of IL1 β -R3 in HEPES buffer.

Figure S8. 2D-¹H,-¹⁵N- HSQC spectra comparing (left) IL1 β -S1, -S2 and -S3 loaded with diamagnetic Lu (III) with (right) IL1 β -S1, -S2 and -S3 loaded with paramagnetic Tb (III). Spectra were recorded at pH 7 and 20 °C in 10 mM HEPES, 100 mM NaCl and 10 μ M DSS.

Figure S9. $2D^{-1}H^{-15}N$ - HSQC spectra comparing (left) IL1 β -L1, -L2 and -L3 loaded with diamagnetic Lu (III) with (right) IL1 β -S1, -S2 and -S3 loaded with paramagnetic Tb (III). Spectra were recorded at pH 7 and 20 °C in 10 mM HEPES, 100 mM NaCl and 10 μ M DSS.

Figure S10. ¹⁵N- relaxation data of IL1 β -R2. (a) {¹H}-¹⁵N- HetNOE, (b) Spin-lattice (longitudinal) relaxation time T₁ and (c) spin-spin (transverse) relaxation time T₂.

R2	HetNOE	DHetNOE	T1	DT1	T2	DT2	S2	D 62	R2	HetNOE	DHetNOE	T1	DT1	T2	DT2	S2	D 62
A1									P87								
P2									K88	0,55	0,02						
V3	0,11	0,06	667	7	94,3	1,5			N89	0,65	0,03	845	33	55,1	1,3	0,91	0,02
R4	0,36	0,06	794	68	46,3	3,2	0,84	0,03	Y90								
55	0,67	0,03	812	25	54,8	1,9	0,89	0,01	P91								
N7	0.75	0.03	849	41	54.2	1,3	0.95	0.01	K92	0.72	0.03	791	27	51.4	21	0.91	0.01
C8	0,81	0.04	858	30	57.0	0.9	0,99	0,01	K94	0.64	0.03	878	51	50.2	0.9	0.92	0.02
Т9	0,76	0,04	780	9	44,0	4,1	0,92	0,01	M95	0,66	0,04	895	58	60,1	1,2	0,91	0,02
L10	0,71	0,05	785	47	53,8	2,5	0,92	0,02	E96	0,80	0,04	816	18	48,1	2,1	0,96	0,01
R11	0,84	0,03	829	27	59,0	2,4	0,98	0,01	K97								
D12	0,77	0,03	793	40	51,7	1,7	1,00	0,02	R98	0,82	0,03	829	26	53,5	1,6	0,99	0,01
014	0,01	0,04	007	/1	02,1	2,2	0,90	0,01	F99	0,88	0,04	834	19	47,9	2,1	0,98	0,01
Q15	0,84	0.05	882	61	39.8	3,4	0,93	0.03	F101	0.87	0.05	857	104	53.5	3.0	1.00	0.02
K16									N102	0,85	0,05	980	46	57,7	4,0	0,94	0,02
S17									K103	0,81	0,05	903	8	57,5	4,2	0,98	0,00
L18	0.70		005	50			0.00	0.04	1104	0,89	0,06	874	13	48,1	2,4	0,98	0,01
V19	0,78	0,04	965	53	54,4	2,4	0,99	0,01	E105	0,76	0,03	852	32	56,8	1,7	0,94	0,02
S21	0.65	0.02	788	43	57.9	2,5	0,95	0.02	N107	0,54	0,02	734	15	13,0	1,4	0,03	0,01
G22	0,00	0,02	100	40	01,0	2,1	0,04	0,02	N108	0.67	0.04	731	34	34.2	0.4	0.83	0.02
P23									K109	0,63	0.02	762	17	64.9	1.0	0,90	0.01
Y24	0,56	0,02	966	52	51,4	2,8	0,83	0,02	L110	0,86	0,05	777	34	46,8	1,1	0,96	0,02
E25	0,73	0,02	896	29	55,2	1,7	0,89	0,02	E111	0,74	0,04	815	27	47,6	1,5	0,98	0,01
L26	0,69	0,02	862	35	57,2	1,8	0,91	0,02	F112					39,0	3,9		
K27	0,77	0,04	1004	121	48,7	1,7	0,86	0,06	E113	0,80	0,04	753	27	52,6	2,5	0,87	0,03
A28	0,55	0,02	825	46	46.5	2,4	0,78	0,01	S114 A115	0,80	0,05	883	32	42,8	1,8	1,00	0,01
H30	0.75	0.04	908	37	48.7	3.2	0.99	0.01	Q116	0,70	0,05	019	04	40,1	3,5	0,99	0,01
L31	0,72	0,03	816	34	55,4	0,9	0,94	0,02	F117	0,78	0,03	829	28	57,0	3,1	0,98	0,01
Q32	0,65	0,02	778	27	62,9	1,8	0,92	0,01	P118								
G33	0,60	0,03	570	23	69,3	4,6	0,60	0,03	N119	0,77	0,05	1015	57	57,3	3,4	0,93	0,02
Q34	0.00	0.00	001	10	60 C	0.5	0.77	0.01	W120	0,72	0,03	836	75	39,1	3,0	0,96	0,03
D35 M36	0,68	0,02	782	10	63.0	2,5	0,77	0,01	Y121	0,69	0,05	886	28	39,8	2,9	0,94	0,01
E37	0.65	0.02	826	16	52.4	2.2	0.90	0.01	\$123								
Q38	0,00	0102	010		02,1	-,-	0,00	0,01	T124	0.87	0.08	722	73	40.0	9.3	1.00	0.04
Q39	0,75	0,03	796	26	56,4	1,1	0,95	0,01	S125	0,81	0,07	830	110	44,6	2,6	0,99	0,05
V40	0,67	0,04	1001	52	40,5	1,1	0,87	0,02	Q126	0,85	0,03	805	22	49,0	1,9	0,97	0,01
V41	0,79	0,04	989	64	55,2	0,9	0,83	0,03	A127	0,61	0,02	721	22	57,1	0,8	0,84	0,02
F42	0,82	0,06	894	21	48,3	2,9	0,94	0,01	E128	0,77	0,03	879	24	50,9	2,8	0,94	0,01
545 M44	0,95	0,05	817	42	46.0	3.4	0,90	0,02	N129	0,80	0,05	869	13/	48,4	2,1	1,00	0,02
S45	0.82	0.04	827	47	43.4	1.4	0.97	0.02	P131	0,79	0,04	745	41	52,0	1,0	0,91	0,04
F46	0,81	0,05	908	26	54,7	2,7	0,99	0,01	V132	0,73	0.05	940	44	56,4	3.3	0,90	0,02
V47	0,83	0,06	903	50	54,2	4,9	0,99	0,02	F133	0,82	0,04	824	14	47,5	1,1	0,98	0,01
Q48	0,72	0,04	843	46	56,7	2,5	0,98	0,02	L134								
G49	0,53	0,03	718	52	76,9	2,7	0,76	0,02	G135	0,81	0,05	977	51	47,9	2,2	0,92	0,03
E50	0,34	0,02	803	13	15,1	3,2	0,82	0,01	G136	0,64	0,06	761	32	34,8	2,7	0,84	0,02
S52	0,40	0,02	0//	17	02,2	2,0	0,71	0,01	K138	0,55	0,02	642	40 30	54,4 80.9	5.4	0,62	0,04
N53									G	0.36	0.02	551	36	53.4	9.7	0.43	0.05
D54	0,49	0,02	670	35	68,4	1,7	0,71	0,03	Y	0,44	0,02	621	37	52,6	2,6	0,61	0,04
K55	0,82	0,04	886	48	53,4	3,9	0,95	0,02	L.	0,43	0,04	720	35	53,5	4,4	0,74	0,03
156	0,61	0,03	871	29	53,9	3,1	0,90	0,02	D								
P5/	0.71	0.04	046	49	40.1	2.5	0.04	0.02	т	0,49	0,02	698	42	54,5	3,3	0,73	0,03
A59	0.77	0.03	940	72	57.2	1.6	0,94	0.02	N	0,46	0,02	610	28	55,4 48.9	3.9	0,60	0,03
L60	0.81	0.06	833	37	55.0	2.1	1.00	0.01	D	0.49	0.02	661	63	52.9	5.0	0,68	0.05
G61	0,72	0,05	868	63	42,9	2,3	1,00	0,03	G	0,51	0,03	656	58	44,5	5,1	0,67	0,05
L62									w	0,52	0,02	600	21	80,7	3,5	0,65	0,02
K63									1	0,58	0,06			45,5	8,0		
E64									E	0,53	0,03	630	26	48,9	2,6	0,67	0,02
K65									G	0,44	0,05	685	70	44,4	3,7	0,69	0,06
167									5	0,58	0,03	652	20	47,1	1,6	0,78	0,01
Y68									L	0,45	0,04	718	27	53.8	2,5	0,00	0,04
L69	0,70	0,05	801	29	51,1	5,4	0,91	0,02	Y	0,45	0.02	651	22	50.2	6.5	0.63	0.02
S70	0,79	0,04	929	43	54,8	3,1	0,89	0,02	G139								
C71	0,72	0,04	782	18	46,0	3,0	0,90	0,01	G140								
V72	0,85	0,03	945	22	58,6	2,8	0,86	0,01	Q141	0,51	0,03	641	33	54,5	2,5	0,67	0,03
L/3	0,76	0,03	022	20	54.5	1,/	0,83	0,01	D142	0,61	0,03	731	66	43,9	5,3	0,84	0,04
D75	0,74	0.12	322	32	36.8	5.1	0,09	0,02	T143								
D76	0,74	0,03	896	21	33.7	1.5	0.94	0.01	D145								
K77	0,72	0,02	826	20	54,4	1,7	0,94	0,01	F146	0.60	0.07			49,5	6.5		
P78									T147	0,81	0,04	995	32	49,6	3,8	0,82	0,02
T79	0,78	0,03	877	29	46,9	2,6	0,95	0,02	M148	0,80	0,03	883	27	54,2	3,0	0,94	0,02
L80	0,79	0,04	972	35	47,8	4,4	0,89	0,02	Q149	0,80	0,05	875	58	52,3	0,9	0,97	0,03
Q81	0,81	0,04	921	48	54,1	3,4	0,92	0,02	F150	0,72	0,03	834	21	56,7	1,7	0,96	0,01
E83	0,70	0.04	843	32	48.2	2,0	0,93	0,02	V151 S152	0,59	0,03	815	22	/1,0	3,9	0,90	0,01
S84	0,78	0.02	836	24	47.4	2,4	0.95	0.01	S152	-0.12	-0.01	640	12	169.4	2.8		
V85						_,,	.,		0.00	0,12	5,01	545		,4	2,0		
D86	0,79	0,05	837	32	42,3	1,4	0,93	0,02									

Table S3. Relaxation data and order parameters for IL1 β -R2

Crystallization and Structure determination of IL1β-L3

For crystallization protein was loaded with TbCl₃ as described for IL1 β -S1 and concentrated to 15 mg/ml. Initial screening used the Hampton Index screen. IL1 β -L3 crystallized readily from 0.2 M ammonium sulfate, 0.1 M Bis-Tris pH 6.5, 25% w/v PEG 3,350 (condition 67, Hampton Index Screen).

Data were collected at beamline X12C at the National Synchrotron Light Source. IL1 β -L3 crystals were cryoprotected by soaking the crystals in 15% glucose in mother liquid and then transferred to 30% glucose solution plus mother liquor. Crystals were flash frozen in the gaseous cryogenic N₂ stream. Data were collected at beamline X12C at the National Synchrotron Light Source using a wavelength of 0.95 Å and processed with DENZO/SCALEPACK³. Crystals diffracted to 1.7 Å and belong to space group P4(1). Data collection and refinement statistics are presented in Table S4.

The structure solution was carried out via molecular replacement with the program Phenix⁴ using the structure of wild-type IL1 β as the model (PDB 1T4Q) with residues 74-77 and all solvent molecules removed. Manual protein rebuilding was performed in COOT⁵ with alternating rounds of refinement carried out in Phenix. The final model contains the entire IL1 β molecule (excluding residues 80-86) including 7 of 17 residues of the LBT and 123 waters.

Table S4 Data collection	Structure]	Determination and	Refinement	Statistics	of IL1β-	·L3
--------------------------	-------------	-------------------	------------	------------	----------	-----

Data Collection – IL1β-L3 Mutant							
Space group and unit cell	$P4_1$; $a = b = 42.6$ Å, $c = 88.0$ Å						
Wavelength (Å)	1.54						
Resolution limits (Å) (highest resolution shell)	19.17-1.70 (1.76-1.70)						
no. of reflections							
Measured	298,082						
Unique	33,108						
Completeness (%)							
All data (highest resolution shell)	97.4 (91.0)						
R_{sym}^{a} (on <i>I</i>) (highest resolution shell)	0.039 (0.48)						
[<i>I</i> /σ(<i>I</i>)]							
all data (highest resolution shell)	33.8 (4.77)						
Refine	ement						
Resolution (Å)	19.2-1.70						
R factor	0.174						
R free	0.213						
Reflections in test set	3,355						
non-hydrogen atoms	1,429						
RMS deviations							
Bond lengths (Å)	0.007						
Angles (°)	1.13						
Average B factor ($Å^2$) (all atoms)	39.1						

 $R_{\rm sym} = \sum |I_{\rm obs} - \langle I \rangle | / \sum I_{\rm obs}$

References

- (1) Studier, F. W. Protein Expr. Purif. 2005, 41, 207.
- (2) Zweckstetter, M. Nat. Protoc. 2008, 3, 679.
- (3) Otwinowski, Z.; Minor, W.; Carter, C. W. J. Methods Enzymol. 1997, 276, 307.
- (4) Adams, P. D.; et al. Acta Crystallograph., Sect. D 2009, 66, 213.
- (5) Emsley, P.; Cowtan, K. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004, 60, 2126.

Complete References:

(63) Schwede, T.; Sali, A.; Honig, B.; Levitt, M.; Berman, H. M.; Jones, D.; Brenner, S. E.; Burley, S. K.; Das, R.; Dokholyan, N. V.; Dunbrack, R. L.; Fidelis, K.; Fiser, A.; Godzik, A.; Huang, Y. J.; Humblet, C.; Jacobson, M. P.; Joachimiak, A.; Krystek, S. R. J.; Kortemme, T.; Kryshtafovych, A.; Montelione, G. T.; Moult, J.; Murray, D.; Sanchez, R.; Sosnick, T. R.; Standley, D. M.; Stouch, T.; Vajda, S.; Vasquez, M.; Westbrook, J. D.; Wilson, I. A. *Structure* 2009, *17*, 151

(92) Adams, P. D.; Afonine, P. V.; Bunkóczi, G.; Chen, V. B.; Davis, I. W.; Echols, N.; Headd, J. J.;
Hung, L.-W.; Grossr-Kunstleve, R. W.; McCoy, A. J.; Moriantly, N. W.; Oeffner, R.; Read, R. J.;
Richardson, D. C.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P. H. Acta Crystallograph., Sect. D 2009, 66, 213.