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SUPPORTING METHODS  

 

All-atom Molecular Dynamics (MD) simulations 
 
All MD simulations were performed with Gromacs 4.0.5 (27). For force distribution analyses, an 
extension of Gromacs

 
(38) was utilized to write out atomic pair-wise forces. The simulation 

parameters were the same as in the previous study (9). Shortly, the OPLS-AA force field (28) for 
the protein and the TIP4P model (29) for water were employed, a time step of 2 fs was used, and 
simulations were performed at constant temperature (300 K) and pressure (1 bar), with periodic 
boundary conditions and with Particle-Mesh Ewald summations for long-range (>1 nm) 
electrostatics (39). All simulations were run without any bias regarding force field parameters or 
boundary conditions. 
 

Crystalline subunit. The all-atom model is composed of five layers, each layer containing five -

strands with each -strand having eight alanine repeats. Details on the modeling, equilibration, 
and force distribution analysis of the crystalline subunits have been published (9). The crystalline 
subunit was totally intact throughout the equilibration and up to the rupture point in the force-

probe simulations. Supporting Fig. S5 shows the RMSD of the -sheets in a crystalline subunit 
during an equilibrium MD simulation. The overall RMSD is as low as ~0.11 nm after 10 ns. 
 
Amorphous subunit. The all-atom model comprises the 24 residue sequence known to form the 
amorphous subunit in Araneus diadematus spider silk (GPGGYGPGSQGPSG PGGYGPGGPG, 
where G, P, Y, S, Q are glycine, proline, tyrosine, serine, and glutamine, respectively). A single 
peptide chain was generated in a partially extended conformation (end-to-end distance of 6.2 
nm), solvated in water with physiological ion concentration (100 mM), resulting in a system of 
6x6x10 nm

3
 and ~47000 atoms. During 20 ns of equilibrium MD simulations, the chain collapsed 

to an average distance of 0.38 nm. To obtain a force-extension curve with minimal 
nonequilibrium effects, we used umbrella sampling, in which harmonic potentials acted on the 
peptide termini along z-direction. We sampled in 34 windows for 20 ns each, starting from 
snapshots with varying the end-to-end distances (0.12 to 8.87 nm). The harmonic potential force 
constant was 100 kJ/mol/nm

2
. All other simulation parameters were kept the same as in the all-

atom simulations of the crystalline subunit. Weighted histogram analysis method (40) was 
applied to check the overlap between the umbrella samples and to calculate the stretching force 
of the peptide as a function of its end-to-end distance.  
 
Composite unit. Two crystalline subunits were serially coupled with an amorphous subunit and 
pulled away from each other. The amorphous subunit was composed of eight entangling peptide 
chains having 50% initial extension relative to the chain contour length. This initial extension 
was chosen as an intermediate value of a polymer in shear flow (see e.g. Rammensee, et al. (8)), 
as it is present in the spider gland during silk fiber spinning. In natural spider silk fibers, cross 
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linking of the crystalline units via disordered chains occurs randomly to an extent that depends 
on the alignment of the chains during fibrillogenesis due to shear flow.  Our model corresponds 
to a situation where approximately one third of the disordered peptide chains (8 out of 25) 
connected the same crystalline subunit to another one. Conformations for the disordered peptide 
chains at an extension of 50% of the contour length were taken from umbrella sampling MD 
simulations (see above). The strands from the two crystals were connected by the eight peptide 
chains as shown in Fig. 3b in the main text. For the skeleton model, we find the connectivity not 
to influence the effective elastic response of the composite unit. Probing a composite unit with 
different connectivity (e.g. with all straight chains) is computationally demanding, and can be 
expected to also give a similar elastic response, given the efficient cross-chain force distribution 
(see Results in the main text). The composite unit was solvated with TIP4P water in a 7x7x45 
nm

3
 box with 100 mM ion concentration. The system had a total number of ~300,000 atoms. 

After energy minimization using steepest descent method, 500 ps position restrained simulations 
were followed by 10 ns equilibrium simulations. As a further validation of the all-atom model, 
the density of the composite unit was calculated as 1.12 g/cm

3
, in good agreement with ~1.14 

g/cm
3
, calculated by Fossey (11) and in reasonable agreement with the experimental results for 

similar silk fibers with ~1.35 g/cm
3
 (41) and for the amorphous regions with ~1.14 g/cm

3 
(42). To 

obtain a force-elongation curve, crystalline subunits were pulled using virtual springs with 
harmonic force constants (500 kJ/mol/nm

2
) acting at the center of mass of the alanines at the C 

and N-termini of the composite unit. The springs were moved away from each other with a 
velocity of 0.2 m/s. The force-probe MD simulations were stopped after rupture occurred at ~60 
ns. For the force distribution analysis, constant forces of 1600 kJ/mol/nm and 100 kJ/mol/nm 
were applied to the same pulling groups to sample the perturbed and relaxed states, respectively. 
The system was equilibrated under this constant force and the pairwise forces in the composite 
unit were averaged and written out over 10 ps intervals. For both states, five independent MD 
simulations (10 ns each) were performed and the pairwise forces averaged over the aggregated 
simulation time. All other parameters were identical to those described above.  
 

Finite Element (FE) simulations of the skeleton and comprehensive fiber models 
 

Crystalline subunit. We constructed a skeleton model of the crystalline subunit (5x5 -strands) 
consisting of four types of isotropic Euler beams. Each protein backbone was represented by a 
single elastic member. We defined a linear elastic modulus, E, of ~743.0 GPa as obtained from 
stretching a single (Ala)8 chain in force-probe MD simulations. For other members, representing 

single covalent bonds (i.e. C=O, N-H, and C-C), the elastic modulus was directly obtained from 
the force constant k of these bonds in the OPLS/AA force field (28), using E=kL0Ao

-1
, resulting in 

~297.0 GPa. The nominal cross sectional area Ao was calculated by assuming a bond radius of 
0.1 nm for all covalently bonded members. Similar to the covalent bonds, the nonbonded 
interactions between alanine side-chain (CH3) groups in the all-atom model were also represented 
with linear elastic members in the skeleton model. These members connected backbone members 

between -sheet layers. The elastic response was estimated from a Lennard-Jones (LJ) potential 
fitted to the total interaction energy between alanine CH3 groups in equilibrium MD simulations. 
Nominal length of the corresponding members in the skeleton model, L0, was the equilibrium 
CH3-CH3 distance observed in MD simulations.  
 

Hydrogen bonds in the crystalline subunit, connecting the backbone members within a -sheet 
layer, were represented with nonlinear elastic members in order to consider the weakening of 
hydrogen bonds with increasing strain. The strain-dependent elastic modulus of the hydrogen 
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bonds was calculated from the first derivative of the hydrogen bond potential, defined as the sum 
of the Lennard-Jones and Coulomb interactions between the four atoms taking part in hydrogen 
bonding (i.e., N-H and C=O) as defined by the OPLS-AA force field (28). The cross sectional 
radius of the members representing the nonbonded interactions (intrasheet hydrogen bonds and 
intersheet side-chain interactions) was taken as 0.06 nm (details provided in Xiao, et al.

 
(9)). 

Nominal length, L0, of the members representing the hydrogen bonds was defined as the 
equilibrium hydrogen bond (O∙∙∙H) distance observed in MD simulations. 
 
Amorphous subunit. The amorphous subunit was modeled with nonlinear elastic members, each 
of which corresponds to a 24-mer peptide chain as in the all-atom model. The force elongation 
curve of the amorphous chain from all-atom MD simulations (see above) was used as an input for 
the skeleton model. The elastic modulus increases with chain length L, as a result of the entropic 
stiffening characteristic for polymer chains (Supporting Fig. S3a). This mechanical behavior was 
observed at different portions of umbrella sampling MD simulations, indicating that the 
simulation time scale was not a major limitation (Supporting Fig. S3b). At low forces the 
convergence between force-extension curves is reasonable, and at higher forces the curves 
overlap. The cross sectional radius of the corresponding members in the skeleton model was 0.1 
nm as for other covalent members, and nominal member length, L0, was taken as 0.38 nm, which 
was the average end-to-end distance of the coiled peptide chain during equilibration MD 
simulations. 
 
Composite unit. Analogous to the all-atom composite unit, we serially coupled two crystalline 
subunits with an amorphous subunit consisting eight diagonally oriented chains.  External tensile 
stress was applied in a distributed manner at the termini of each crystal in opposite directions. 
Parameters of the members in the composite unit were same as in the skeleton models of the 
individual subunits.  
 
Comprehensive fiber model. This model was only tested with FE simulations, since MD 
simulations of the same system at atomistic scale (~ 1.2 million atoms) were computationally 
unfeasible. A three dimensional solid stress-strain model was used for the fiber FE simulations. 
Amorphous subunits were assumed to be completely isotropic (Ea = 2.7 GPa) while the 
crystalline subunits were modeled as transversely isotropic (Ec = 80.0 GPa in the pulling 
direction). The elastic moduli of the subunits were calculated from the all-atom simulations of the 
composite unit. Poisson’s ratio for both types of subunits was taken as ~0.33 in the pulling 
direction, as suggested by Fossey for poly(Gly-Ala) crystals (11).  These values were used as 
input for the comprehensive fiber model. The fiber was represented by a linear elastic cylindrical 
solid member pulled by distributed loads acting on both ends. The fiber was 7 nm in radius and 
39 nm in length. The crystalline subunits were represented with linear elastic cubic members 12 
nm

3
 in size, corresponding to the dimensions of the all-atom crystalline subunit, and embedded 

into a continuous amorphous phase without any slip at the interfaces. We compared a random 
distribution state of the crystals in the fiber with two other extreme states, named as serial 
(lamellar) and parallel (longitudinal) distribution of the crystals. We note that the parallel 
distribution, even though insightful for comparison, cannot be realized due to the block-
copolymer like silk protein sequence. The elastic modulus of the fiber, Ef, was determined with 
varying crystallinity, which is the volume percentage of the crystals in the fiber (Fig. 4a in the 
main text). Rupture strength and strain of the fiber were estimated from the stress distribution 
analysis across the fiber (Fig. 4b in the main text). More precisely, the fiber’s rupture stress and 
strain were the values at the instant where the average tensile stress in the crystalline subunits 
reached 2.0 GPa. This was the value observed in the all-atom model of the composite unit prior 
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to rupture. Toughness, the integral of the stress-strain curve, of the fiber was calculated as half 
the product of the rupture stress and the strain based on our definition. We here do not take 
yielding of the fiber into account, which allows for a further increase in (plastic) strain without 
the failure of the fiber. We thus consider the estimated rupture strain and toughness values to 
present the lower limits of the actual rupture strain and toughness, respectively. 
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SUPPORTING FIGURE LEGENDS 

 

Supporting Figure S1. Pull-out resistance of the crystalline subunit. Results from the all-atom 
(black) and skeleton models (red) as the middle strand is pulled out from the crystalline subunit 

(indicated by the red -strand in the lower inset). A linear fit for the all-atom model is shown 
with blue line. The upper inset shows the pull-out resistance-strain curves for a higher range of 
values. 

 

Supporting Figure S2. Distribution of the pulling force (1.66 nN) in the crystalline subunit. 
Pulling force is applied to the central strand and the responses from the skeleton (a) and all-atom 
(b) models are shown. Only the axial forces in the backbone are shown as color codes. The 
strands in (b) are shown in cartoon representation. 

 

Supporting Figure S3. Mechanical behavior of the disordered peptides in the amorphous 
subunits. (a) Elastic modulus of the members representing the disordered chains of the 
amorphous subunit in the skeleton model. The nonlinear behavior of these chains resembles a 
neo-Hookean solid. Up to a certain chain length, a constant value of 1.6 GPa was used for 
convenience. The upper limit was set as 743.0 GPa, which is the elastic modulus value for the 
fully extended backbone members. Schematics represent the state of chain extension. (b) Force-
extension curves of a disordered peptide chain obtained from different portions of umbrella 
sampling MD simulations. At low forces the convergence between force-extension curves is 
reasonable, and at high forces the curves overlap indicating full convergence. 

 

Supporting Figure S4. Stress-strain curve of the amorphous subunits in the absence of the 
crystalline subunits in an all-atom model. Inset shows the schematic of the pulling process.  

 

Supporting Figure S5. RMSD of a crystalline subunit during an equilibrium MD simulation of 

10 ns. The overall RMSD of all 25 -sheets in the crystalline subunit (black) is shown along with 

the RMSD regarding the inner 9 (red) and outer 16 -sheets (blue). 
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SUPPORTING FIGURES 
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