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Section S1. Dynamics of a BLS Surrounded by Water in an US Field
(Model I). A simplified BLS model was constructed (shown
schematically in Fig. 1A) with a circular, axisymmetric, piece of
a bilayer membrane, made of two monolayer leaflets. At the
reference case, before US is applied, water saturated with air
surrounds the leaflets from outside the membrane and a thin air
layer compartment lies in between the two parallel leaflets (S0 in
Fig. 1A). The thickness of the air layer at the reference case is
determined by a force balance between the atmospheric pressure
in the water, the air pressure in the air layer, and the molecular
attraction/repulsion force per area (pressure) between the leaf-
lets. For water saturated with air (as in our simulation) the air
pressure in the gas layer is atmospheric and the force between
the leaflets is zero. However, for degassed water and reduced
dissolved air in the water, less air will accumulate between the
leaflets, the air pressure will decrease, and the repulsion pressure
between them will increase. While the two leaflets are forced to
separate, they move opposite to each other in a symmetric way.
For simplicity, only one leaflet’s dynamics (the upper leaflet in
Fig. 1A) are modeled while the other leaflet (the lower leaflet in
Fig. 1A) is kept fixed at the symmetry plane and cannot move.
The rims of the leaflets are connected at radius a by a circum-
ferential support that prevents any in-plane motion. Uniform
acoustic pressure (PA) is applied from above the upper leaflet
while attraction/repulsion force per area (pressure) between the
two leaflets is applied from below. This force is parallel but not
uniform. It is obtained by integration over a distributed force
that varies with the radial coordinate (r) and depends on the
local distance between the two leaflets. In addition, the pressure
in the gas compartment acts from below the leaflet. Due to force
imbalance on the upper leaflet it deforms perpendicular to the
plane and acquires a dome shape as shown in Fig. 1A. When the
deviation of the dome center from the initial planar position (H)
is small (jHj ≤ Hmin), the mechanical response (e.g., accelera-
tion) of the upper leaflet and the liquid above it is negligible and
the equilibrium equation takes the form

Par þ Pin −P0 þ PAsin ωt ¼ 0: [S1.1]

Here PA is the acoustic pressure, ω is the angular frequency of
ultrasound, and Par is attraction/repulsion pressure,

Par ¼ 2
ða2 þH2Þ

ða
0
f ðrÞrdr; [S1.2]

that is attributed to the attraction/repulsion forces f(r)

f ðrÞ ¼ Ar
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: [S1.3]

Here, Δ is an initial gap between the upper and lower leaflets
and h(r) is the local deviation of the leaflet from the initial po-
sition. Values of Ar = 105 Pa, Δ = 1.4 nm, m = 5, and n = 3.3
are chosen to correspond to experimental data for repulsion/
attraction forces between two bilayers assuming that they are
about the same as between leaflets of the same membrane (1).
The maximal separating pressure required to separate the two
leaflets of the bilayer membrane is calculated thereafter to be
∼1.48 × 104 Pa at h = 0.49 nm. This separating pressure is in
accord with Craig’s measurements of the force between two
surfactant-coated silica surfaces (2). Upon separation, the at-

traction force on short distances <10 nm was not more than
∼10−8 N, from which an attraction pressure of 105 Pa can be
estimated on the basis of the estimated area of contact of ∼10−13
m2. However, because the monolayers in Craig’s experiment
attract each other even from relatively large distances up to
several hundred nanometers, it seems that much greater areas
account for attraction force <<105 Pa. How does this pressure
compare with the pressure required to inflate a tiny spherical
nanobubble? The acoustic pressure (p) that is required to expand
the bubble should overcome the inward, contracting surface
forces p ∼ 2σ/r, where σ is the surface tension (∼0.07 N·m−1 for
air/water interfaces) and r is the bubble radius. When r = 1 nm,
the required pressure amplitude must exceed 1.4 × 108 Pa; and
indeed it is much easier to inflate the bilayer membrane rather
than a nanometric spherical bubble.
The local deviation h(r) may be expressed as

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − r2

p
−RþH; [S1.4]

where R is the instantaneous radius of curvature of the mem-
brane,

R ¼ a2 þH2

2H
; [S1.5]

assumed to be constant over the membrane surface.
The gas pressure between the membrane and a solid Pin is

determined by the shape of the membrane. Assuming that ini-
tially Pin = P0, and depending on the value of H, Pin may be
expressed as

Pin ¼ P0

�
1þ H

6Δ

�
3þH2

a2

��− κ

: [S1.6]

Here κ is a polytropic constant, being dependent on the value of
the gas volume falling in the range between 1 and the ratio of the
gas-specific heats. Taking into account a very small volume of the
gas, it may be assumed that the compression/expansion of the gas
is isotropic and that κ= 1 (3). It is also assumed that in the initial
moment t = 0, when H = 0 and Δ = s, the membrane is in
equilibrium; namely, Par = 0.
Finally, Eq. S1.2 divided by Eq. S1.6 is substituted into Eq. S1.1

to provide a transcendental, quasi-steady equation that can be
solved forH(t).WhenH increases, themechanical response of the
leaflet, and the liquid above it, can no longer be neglected and is
taken into account by using the following equation (4):
For H > Hmin:
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For H <–Hmin:
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Here ρl is the density of surrounding liquid; μl is the dynamic
viscosity of the liquid; μs is the dynamic viscosity of the mem-
brane; and δ0 is the initial thickness of the membrane. Note that
Eq. S1.7 is based on the RP equation that was derived originally
for a spherical bubble; nevertheless, it is applicable to any curved
surface that is a part of a sphere as well, as in the case of the
leaflet under consideration.
The pressure Ps attributed to the circumferential tension per

unit length (T′) in the membrane may be found from the force-
balance equation

T′ ¼ Ps
a2 þH2

2H
; [S1.8]

where

T′ ¼ ks

�
H
a

�2

; [S1.9]

and where ks is the area compression modulus, and the mem-
brane surface is

S ¼ πða2 þH2Þ; S0 ¼ πa2; [S1.10]

and the pressure is

Ps ¼ 2ksH3

a2ða2 þH2Þ: [S1.11]

The area compression modulus (area stiffness) varies over a wide
range of values, from <ks = 0.06 N·m−1, an overestimated av-
erage value for a highly nonlinear curve of T′ − S typical of
undulated membrane at low tension (5, 6), and ks = 0.24 N·m−1,
for a stretched bilayer membrane, already flattened (7). At low
projected areal strain (below ∼10%), the leaflet is wavy and
undulated (8). Stretching the leaflet in this case primarily flattens
it, overcoming bending resistance, where the bending stiffness of
a bilayer membrane is ∼0.08 N·m−1 (20kBT, where kB is the
Boltzmann constant), being 0.01 N·m−1 for a half-thickness
leaflet, because of the bending stiffness ∼δ30. An upper limit for
leaflet stretching stiffness that accounts both for stretching and
for bending was set to the stretching stiffness of a bilayer
membrane, namely 0.24 N·m−1 or 60kBT (7).
The diffusion of dissolved gas in the water is controlled by

Fick’s equation:

∂Ca

∂t
¼ Da∇2Ca: [S1.12]

Here Ca is the mole concentration of the air in the surrounding
liquid, and Da is the diffusion constant. The membrane is as-
sumed as a flat and fixed disk on a plane with radius a that
bounds the space filled with water. No air diffuses through the
plane and spherical symmetry is assumed. So basically we solve
the diffusion problem in a semi-infinite space above a plane
where the initial and boundary conditions for the air concen-
tration on that plane are

Caðξ; 0Þ ¼ Cia; [S1.13]

Caða; τÞ ¼ Cs; τ> 0: [S1.14]

According to Henry’s law,

Cs ¼ Pin

ka
; [S1.15]

where ka is the Henry’s constant and the internal pressure, Pin,
may be expressed by

Pin ¼ naRgT
Va

: [S1.16]

Here, Rg is the universal gas constant, T is the absolute tem-
perature, and Va is the air volume under the leaflet:

Va ¼ πa2Δ
�
1þ H

6Δ

�
3þH2

a2

��
: [S1.17]

The air molar content na is determined by

dna
dt

¼ SDa

�
∂Ca

∂r

�
r¼a

; [S1.18]

where the initial condition is

najt¼0 ¼
P0Va

RgT
: [S1.19]

Section S2. Pressure Amplification by a Pulsating Gas Bubble (Model
III). The following model was developed to demonstrate how
a bubble that pulsates steadily near a wall in an ultrasonic field
[see also our study (ref. 9) for a similar approach] acts as an
amplifier of the acoustic pressure pulse. In fact, the bubble
amplifies the pressure pulse even without being near a wall. The
model is simple in the sense that the bubble dynamics equation is
with spherical symmetry, despite the presence of the wall near
the bubble. Consider a spherical bubble in infinite space sub-
jected to an ultrasound field. The pulsations of the bubble are
described by the following equation for bubble dynamics (10),

�
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Cl
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R€Rþ 3 _R

2

2
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3Cl

�
¼
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1þ

_R
Cl

�
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þ R
Cl

1
ρL

dP
dτ

;

[S2.1]

with the initial condition

Rjτ¼0 ¼ R0: [S2.2]

Here

P ¼ PL −P∞ −
2σ
R

−
4μ _R
R

[S2.3]

and is the pressure at infinity, oscillating with time:

P∞ ¼ P0½1þ A sin ðωτþ β0Þ�; ω ¼ 2πf : [S2.4]

In the adiabatic case the pressure inside the bubble PL may be
represented as

PL ¼
�
P0 þ 2σ

R0

��
R0

R

�3κ

: [S2.5]

Here τ is time, R is the bubble radius, and R0 is the initial radius,

_R ≡
dR
dτ

; €R ≡
d2R
dτ2

;

where P0 is the initial pressure of the gas inside the bubble, PL is
the pressure inside the bubble, σ is the surface tension, κ is the
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gas ratio of specific heats, μ is the dynamic viscosity of the liquid,
ρL is the liquid density, Cl is the velocity of sound in the liquid,
and f is the US frequency.
The pressure distribution along the z axis is derived from the

energy conservation (Bernoulli) equation along a streamline of
a noncompressible nonviscous liquid,

p
ρL

þ ∂θ
∂τ

þ v2

2
¼ const; [S2.6]

where θ is the velocity potential.
If we denote the pressure at the bubble’s external surface as Ps,

the pressure at the wall may be expressed as

pw ¼ Ps − ρL
ð0
H −R

�
∂θ
∂τ

þ 1
2

�
∂θ
∂z

�2�
dz; [S2.7]

where the pressure at the bubble surface is

Ps ¼ PL −
2σ
R
: [S2.8]

A potential flow solution is then obtained around a gas bubble
that pulsates near a rigid wall in a nonviscous liquid. The equation
for the velocity potential θ at time t may be written as

∇2θ ≡
1
x
∂
∂x

�
x
∂θ
∂x

�
þ ∂2θ

∂z2
¼ 0 [S2.9]

z ≥ 0; −∞< x<∞; ðz−HÞ2 þ x2 >R2

with the boundary conditions

∂θ
∂z

¼ 0 at z ¼ 0 [S2.10]

∂θ
∂n

¼ _RðtÞ at the bubble surface: [S2.11]

n is external normal to the bubble surface and R(t) is a solution
of the bubble dynamic equation:

θ → 0 at x →±∞ and =  or z → ∞: [S2.12]

In vivo experiments. In vivo experiments that were carried out using
a multilayered epithelium model and that we previously used for
characterizing ultrasound induced bioeffects (11–13) were thor-
oughly reexamined. All animal work was carried out under an
approved protocol and according to institutional guidelines. The
epidermis of fish lacks the stratum corneum of terrestrial ver-
tebrates and instead resembles their mucous membranes, being

similarly composed of multiple layers of all live cells. Fish epi-
dermis, located exterior to their scales, also contains mucous-
secreting cells (analogous to goblet cells) that migrate to the
epidermal surface where they then release their contents.
Common goldfish (4–5 cm in length) were obtained from

a nearby commercial fish farm, maintained in filtered fresh water
at room temperature (20 °C), and fed ad libidum. Following an
acclimation period of at least 1 wk, treatments were carried out
individually using the following procedure. Fish were placed in
a small (1 L) holding tank containing the anesthetic benzocaine
at a concentration of 0.25 g·L−1. Once they stopped swimming,
they were removed from the tank and a 12-mm-wide band of
foam rubber was secured around their midsection. This band was
then used to fasten the fish to the bottom of a larger (12 L) tank
filled with fresh tap water, also at room temperature.
Ultrasound exposures were carried out using a standard

physical therapy device (Sonicator 720; Mettler Electronics). The
transducer was inserted into the tank, just below the water line,
where the active region (10 cm2) was positioned directly over the
head of the fish and parallel to the space between the fish’s eyes,
at a distance of ∼15 cm. Exposures were carried out in contin-
uous mode at 1 and 3 MHz and at a range of intensities (1.0–2.2
W·cm−2) and durations (30–120 s). Exposures at 1 MHz, at all of
the intensities (MI in the range 0.17–0.26), generated stable
cavitation in the fluid medium between the transducer and the
treated surface (11). On the other hand, exposures at 3 MHz (MI
in the range 0.10–0.15) did not generate cavitation, even at the
highest intensity used, which was still below the cavitation
threshold (12). The presence or lack thereof of stable cavitation
during the exposures was validated by the increase in the in-
tensity of the backscattered signal when calibrating the exposures
and the increased attenuation of the propagating beam using
diagnostic ultrasound, where both these phenomena are char-
acteristic of a bubble cloud.
Immediately after the exposures, the fish were taken out of the

tank and a scalpel was used to remove a 3 × 3-mm section (0.5 mm
thick) of the epidermis from the intereye region. Samples were
fixed in glutaric dialdehyde (3% vol/vol), postfixed in osmium te-
troxide (1% vol/vol), both in sodium cacodylate buffer (0.1 M, pH
7.3), dehydrated in increasing concentrations of ethanol (50–
100%), cleared with propylene oxide, and embedded in Epon
(45% Agar 100 resin, 26.7% methyl nadia anhydride, 26.7% do-
decenyl succinic anhydride, 1.6% benzyldimethylamine vol/vol).
Sections from the hardened blocks were cut perpendicular to the
skin surface, mounted on copper grids, and then stained with both
uranyl acetate and lead citrate. Representative transmission
electron micrographs of control and treated tissues were taken in
black and white at magnifications ranging from 2,000× to 50,000×,
using a transmission electron microscope (JEM-100S; JOEL).
These micrographs were subsequently scanned and saved digitally
in JPEG format.
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Table S1. Parameters for the simulation runs of models I and II

Parameter Symbol Unit Value Source

Thickness of the leaflet δ0 nm 2 (5)
Initial gap between the two leaflets Δ nm 1.4 (1)
Dynamic viscosity of the leaflet μs Pa·s−1 0.05 A guess
Attraction/repulsion pressure coefficient Ar Pa 105 (1)
Exponent in the repulsion term m — 5 (1)
Exponent in the attraction term n — 3.3 (1)
Diffusion coefficient of air in water Da m2·s−1 2·10−9 (14)
Density of the liquid ρl kg·m−3 1,056 (15)
Dynamic viscosity of the water μl Pa·s−1 10−3 (15)
Initial air molar concentration in water Ci mol·m−3 0.69
Air polytropical constant κ — 1
Speed of sound in the water Cl m·s−1 1,500 (15)
Henry’s constant ka Pa·m3·mol−1 1.46·105

Static pressure in the water P0 MPa 0.1
Air/ water surface tension σ N·m−1 0.06
Initial phase β0 Radian 3.141

Parameters are based on refs. 1, 5, 14, and 15.
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