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Section S1. The Core Mathematical Models and Parameters. The rate
of change of the number of immature proliferating cells, X1, is
described by

dX1

dt
¼ p1 · fp · X1 − ðα1 þ α12 · fx1x2 · Z2Þ · X1: [S1]

The first term on the right-hand side describes the proliferation of
cells with a nominal per-capita rate p1 that can be shaped by
crowding effects at high numbers of X1 and X2 cells represented
by the function fp ≡ fpðX1;X2Þ ¼ 1

1þγ · ð1− e− ðX1þX2Þ=cÞ. Note that the
per-capita rate coefficient in this equation and in the next one
represents net proliferation rate, the difference between the “ac-
tual” rate and an unknown death rate. The second term repre-
sents the differentiation of X1 cells into X2 with a total flux that
includes a constitutive linear component (α1) and a feedback-
regulated differentiation component (α12 · fx1x2 · Z2). Feedback-
imposed differentiation is mediated by Z2 but assumed to be
limited by the total number of differentiated cells Z1 and, Z2

as follows: fx1x2 ≡ fx1x2ðZ1;Z2Þ ¼ 1
1þðZ1þZ2Þ=θx1. Whether Z1 cells

indeed participate in determining the limitation in feedback de-
pends on the nature of the interactions of Z1 and Z2 with APC—
e.g., on whether the induction of differentiation involves cell-to-
cell contact—and on the degree of interference between them,
but our results did not change in any significant manner if Z1
were not included.
The dynamics of the mature proliferating T cells is modeled

by

dX2

dt
¼ p2 · fp · X2 þ ðα1 þ α12 · fx1x2 · Z2Þ · X1

− ðα2 þ α22 · fx2z1 · Z2Þ · X2: [S2]

Here the first term describes net proliferation of cells of the X2
subset, the second term is the inflow of cells from the previous
compartment, X1, and the last term represents constitutive and
feedback-induced differentiation into nondividing Z1 cells where
that rate is controlled by Z2 and limited by the sizes of the Z1 and
Z2 subsets via the function fx2z1 ≡ fx2z1ðZ1;Z2Þ ¼ 1

1þðZ1þZ2Þ=θx2.
The equations for the nondividing differentiated cells, Z1 and

Z2,

dZ1

dt
¼ ðα2 þ α22 · fx2z1 · Z2Þ · X2 − ðβ1 þ β12 · fz1z2 · Z2Þ · Z1

[S3]

dZ2

dt
¼ ðβ1 þ β12 · fz1z2 · Z2Þ · Z1 − δ · Z2; [S4]

describe the Z2-induced transition of cells through an interme-
diate stage Z1 into Z2. The induction rate is parameterized using
the function fz1z2 ≡ fz1z2ðZ1;Z2Þ ¼ 1

1þðZ1þZ2Þ=θz. Z2 cells are as-
sumed to die or migrate at some constant per-capita rate δ.
The parameters of the core model for activated cell growth and

differentiation are listed and described in Table S1. The best-fit
parameter values were estimated using the maximum-likelihood
approach described in Section S5. The confidence intervals are
broad, indicating that the information content of the data used

for parameter estimation does not allow us to reliably identify
all of the parameters of the model. This result implies that for
the purpose of quantitative description of the considered data
the model is overparameterized and probably can be reduced
without loss of description accuracy. This issue of model parsi-
mony is addressed in Results in the main text and in Section S7.
The model parameters of the parsimonious model are listed in
Table S2.

Section S2. Mathematical Model for BrdU-Labeling Data. To enable
incorporation of the BrdU-labeling data, extension of the model
was developed according to Fig. S1A. Interestingly, to consis-
tently assimilate the clonal kinetics data along with the BrdU-
labeling data, apoptosis of proliferating cells had to be explicitly
included in the BrdU-labeling equations. Thus, we distinguish
between the net proliferation rates (p1, p2) introduced in the
basic Eqs. S1 and S2 and the genuine proliferation rates (p1 + d,
p2 + d), where d is the per-capita death-rate constant. The ex-
tended BrdU version describes the population dynamics of la-
beled and unlabeled cells as follows:
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Section S3. Mathematical Model for CFSE Dilution Data. To compare
the model’s prediction with these experimental findings, we re-
placed the basic set of equations (Eqs. S1–S4 in Section S1) with
equations describing explicitly the evolving CFSE-labeled cell
structure according to Fig. S1B. Every subset of cells in the clone
is further subdivided into a number of compartments reflecting
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cell generations with different numbers of divisions n = 0, 1, . . . ,
N they underwent by time t; e.g., X1ðtÞ ¼ ∑N

n¼0 X
n
1 ðtÞ. Therefore,

the CFSE model equations describe the rates of change in
numbers of cells having defined division histories within the cell
subsets X1, X2, Z1, Z2. The kinetics of nondivided labeled cells
(n = 0) are given by
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and for cells that divided n times (n = 1, . . . , N) the equations
are
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Section S4. Experimental Characterization of Clonal CD4 T-Cell
Dynamics. As outlined in the main text, a series of experiments
using the murine system were performed to analyze the clonal
dynamics of transgenic 5C.C7 CD4 T cells, adoptively transferred
into B10.Amice and then immunized with 100 μg of PCC/25 μg of
LPS (1). The core time series characterizes the expansion and
contraction following transfer of either 5,000 or 500,000 cells. Six
percent of the cells homed to lymph nodes, establishing initial
(“precursor”) populations of 3 × 102 and 3 × 104 responding
cells, respectively. The experimental conditions ensured that
antigen availability was not a limiting factor. BrdU- and CFSE-
labeling procedures were used to characterize the dependence of
cell cycling and division age structure on precursor number and
on the time since response initiation. The effects of adjuvants,
cytokines (IL-1, IL-2, IL-7, and IL-15), and Fas ligands on ex-
pansion were examined to explore the robustness of the observed
regularities. The most interesting regularity was an approximate
square-root law for the dependence of FE on PN. For further
data details we refer the reader to the original source (1).

Section S5. Data Assimilation and Parameter Identification. The
process of combining diverse information into a unified and
consistent description of a physical system is known as data as-
similation (2). Here, to consistently integrate the heterogeneous
sampled data into the core mathematical model of the system’s
dynamics, we optimize a “misfit function,” which expresses the
distance between the whole range of observations and the cor-
responding model estimates. The vector of 15 model parameters
(see Table S1 for definitions), p, p ∈ RL, L = 15, is p = [p1, p2, d,
γ, c, α1, α12, α2, α22, β1, β12, θx1, θx2, θz, δ]. For global adjustment,
we search for a vector of best-fit parameters p* following
a maximum-likelihood approach as described previously (3).
Four blocks of data characterize different aspects of clonal

dynamics. These blocks, along with the constitutive relationships
between the observables and the model state variables, are for-
mally specified below:

The time course of clonal expansion and contraction (Table
S3): We denote the corresponding observation pairs for two
different initial numbers of adoptively transferred cells as
ftji ; Cj

i g5i¼1; j ¼ 1; 2, fNj
0g2j¼1, where the total size of the anti-

gen-specific clone at times tji is the sum

Cðtji ; Nj
0; pÞ ¼ X1ðtji ; Nj

0; pÞ þX2ðtji ; Nj
0; pÞ þ Z1ðtji ; Nj

0; pÞþZ2ðtji ; Nj
0; pÞ.

The size of the clone at day 7 (the expansion magnitude) for
different initial numbers of transferred cells (the “dose-
effect” type data) fCjg2j¼1 (Table S6, first row): The observed
characteristics are related to the model variables at day 7 as
follows:

Cðt;Nj
0; pÞjt¼7 ¼ X1ðt;Nj

0; pÞ þX2ðt; Nj
0; pÞ þ Z1ðt;Nj

0; pÞþZ2ðt;Nj
0; pÞjt¼7:

The cell-cycling fraction (% BrdU+) at times ftjig
5;2

i¼1;j¼1 (Table
S4): Denote the data pairs ftji ;φj

ig5i¼1; j ¼ 1; 2, with the pro-
portion of cells that get labeled after 6 h BrdU pulse defined as
follows:

φðtji ; Nj
0; pÞ ¼

XL
1 ðtji ;Nj

0
;pÞþXL

2 ðtji ;Nj
0
;pÞþZL

1 ðtji ;Nj
0
;pÞþZL

2 ðtji ;Nj
0
;pÞ

Cðtj
i
;Nj

0
;pÞ :

CFSE dilution (Table S5) and factor of expansion (Table S6,
last row) are used for validation of the model rather than for
parameter estimation.

The observation data blocks enter the misfit function as sep-
arate additive terms: Φtime courseðpÞ ¼ ∑2

j¼1 ∑
5
i¼1ðlogCj

i − logC
ðt ji ;Nj

0; pÞÞ2; ΦBrdUðpÞ ≡ ∑2
j¼1 ∑

5
i¼1ðlogφ j

i − logφðt ji ;Nj
0; pÞÞ2, and

Φmagnitude ðpÞ ¼ ∑2
j¼1ðlogCj

d7 − logCð7;Nj
0; pÞÞ2, respectively, so

that the total misfit between the available observations and the
model predictions is expressed by

ΦðpÞ ¼ Φtime courseðpÞ þΦmagnitudeðpÞ þ w · ΦBrdUðpÞ:
Here w is some scaling constant introduced to give appropriate
weight to BrdU data, which are in percentages rather than cell
numbers. The value w = 102 was found appropriate to achieve
uniform consistency of the model with both the clonal kinetics
and the labeling data.
The maximum-likelihood approach to parameter estimation

requires knowledge of the statistical distribution of the observation
errors. The available data vary substantially in termsof sample sizes,
which is common for multiparameter studies of lymphocyte dy-
namics.Themeasurementsofclonal sizesatday7postimmunization
(Tables S3 and S6) are numerous enough to apply the normality
test. The log-transformed values of cell numbers measured at day 7
postimmunization for different frequencies of adoptively trans-
ferred cells (3, 30, 300, and 30,000 cells homing to LNs) all passed
the Kolmogorov–Smirnov normality test using GraphPad Prism

Bocharov et al. www.pnas.org/cgi/content/short/1019706108 2 of 7

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1019706108/-/DCSupplemental/pnas.201019706SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1019706108/-/DCSupplemental/pnas.201019706SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1019706108/-/DCSupplemental/pnas.201019706SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1019706108/-/DCSupplemental/pnas.201019706SI.pdf?targetid=nameddest=ST6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1019706108/-/DCSupplemental/pnas.201019706SI.pdf?targetid=nameddest=ST4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1019706108/-/DCSupplemental/pnas.201019706SI.pdf?targetid=nameddest=ST4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1019706108/-/DCSupplemental/pnas.201019706SI.pdf?targetid=nameddest=ST5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1019706108/-/DCSupplemental/pnas.201019706SI.pdf?targetid=nameddest=ST6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1019706108/-/DCSupplemental/pnas.201019706SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1019706108/-/DCSupplemental/pnas.201019706SI.pdf?targetid=nameddest=ST6
www.pnas.org/cgi/content/short/1019706108


version 4 software (http://www.graphpad.com). Assuming further
that the errors in successive observations are independent and the
variance of observation errors is constant for all observation
times and for different numbers of transferred cells, the maximum-
likelihood approach can be used for parameter estimation (3). We
sought a vector of best-fit parameters p* by maximizing the likeli-
hood function L ðpÞ specifying the probability of obtaining the ob-
served data given the model. Under the above assumptions this
is equivalent to minimizing the value of the composite function
ΦðpÞ ¼ Φtime courseðpÞ þΦmagnitudeðpÞ þ w · ΦBrdUðpÞ. Whereas the
first two terms specify the misfit between model and data in terms
of cell numbers, the third one is in terms of the weighted fraction
of labeled cells. The 95% confidence intervals (CIs) were calculated
via the profile-likelihood method (4). Parameter estimation and
CI analysis were carried out using MATLAB 7.0 routines (http://
www.mathworks.com).

Section S6. Sensitivity Analysis. The analysis was performed using
a sampling-based sensitivity index, the partial rank correlation
coefficient (PRCC) (5) (the code is available at http://malthus.
micro.med.umich.edu/lab/usadata/) combined with the Latin
hypercube sampling (LHS) method. The PRCC determines the
statistical relationships between each model parameter (input
variable) and the specified outcome variable, with the sign in-
dicating the qualitative relation and the magnitude quantifying
the effect of uncertainty in parameter value on the imprecision in
predicting the model output value (6). We considered the factor
of expansion as integrative model output. The LHS was imple-
mented using triangle probability density functions for themodel
parameters with the peak value being the best-fit estimate. The
ranges were taken to be the intervals specified by ±50% of the
best-fit parameter values. The sample sizes were 104. The cor-
relation coefficients computed for the low- and high-precursor
number cases are shown in Table S7.
The most critical parameters appeared to be the proliferation

rate of nondifferentiated cells p1 and the terminal-differentiation
shaping parameters, α22, β12, and θz. A few parameters, such as γ,
c, and d, display a weak linkage to the factor of expansion. In-
terestingly, the sensitivity of FE to the proliferation rate of more
differentiated cells p2 changes its sign with increasing PN.
The uncertainty in the estimates of some parameters is rather

large (Table S1), also indicating that the information content of
the data imposes a restriction on the complexity of the model if
variance of the estimated parameters is an issue. The straight-
forward candidates for elimination were the nonlinear feedback
regulation functions. The corresponding choice is justified by
careful analysis of the parameter values entering the above func-
tions. The optimized value of the misfit function, Φ(p), for the
reduced model at the computed minimum increased only by 10%
compared with the complete version of the model (Section S5).

Section S7. Information-Theoretic and Statistical Comparison of the
Models. In general, biological model architectures are not com-
prehensively justified on the basis of proven mechanisms, but are
merely parsimonious characterizations of the system under study
(7). The two versions of the mathematical model derived in this
article are not the only plausible models for studying clonal dy-
namics in vivo. Other formulations may be preferable given a dif-
ferent context or different goals. It is important not only to evaluate
plausible models with respect to their consistency with the data as

measured by the values of the “misfit function” (described above in
Section S5), but also to assess their distance, called “information
loss,” from an unknown “true model” underlying the specific data
set. The modern information-theoretic framework provides a basis
for such assessment of information loss and for the ranking of
different mathematical models (8).
One of the most powerful criteria for comparing the parsimony

of models given themaximum-likelihood estimation of their misfit
function is the Akaike information-loss criterion (AIC) (8),

μAIC ¼ nd ln
�
Φ
�
p�
��þ 2

�
Lþ 1

�þ 2ðLþ 1ÞðLþ 2Þ
nd −L− 2

;

where nd is the total number of scalar measurements used for pa-
rameter estimation andL is the number of parameters in themodel.
Models with a larger value of the AIC are less consistent with the
data. For the basic model developed above the relative information
loss (distance to the true model of the data) is equal to μAIC ∼ 237.
This value provides a scale for comparing the parsimony of other
mathematical models of the given data sets should they be formu-
lated, for example, models with fewer parameters.
The Akaike index for the simplified model is reduced sub-

stantially, μAIC ∼ 123, and this reduction rewards the model for
parsimony. The computed 95% confidence intervals are pre-
sented in Table S2. The variance of the parameter estimates is
much smaller than that of the parameters of the more complete
model (Table S1), which is consistent with the smaller value of
the Akaike index. Obviously, the more complete model pays
a price for having extra free parameters in view of the limited
information content of the considered datasets.
The reduced mathematical model (which we refer to as R) is

nested within the more general model (denoted G). They have
a different number of parameters, LR = 10 and LG = 15, re-
spectively. The model with more parameters fits the data better
than the simpler model, the relative difference in the value of the
objective function Φ(p*) being ∼10%. The important question in
comparing the models is whether the difference in the fit in terms
of the sum of squared differences between the data and the model
solution is statistically significant. Model discrimination for nested
models is based upon standard hypothesis tests, such as the F-test
(9). Consider the null hypothesis H0 : γ ¼ θz ¼ 0; θx2 ¼ ∞. Note
that under these conditions fp ¼ 1; fx2z1 ¼ 1; fz1z2 ¼ 0 and the
model does not depend on the parameters c and β12. The test
statistic to check the validity of this hypothesis is defined as
F ¼ ΦR −ΦG

ΦG
· nd −LG
LG −LR

. Under the null hypothesis that the reduced
model does not provide a significantly better fit than the general
model, we calculate from the data the estimate of F = 0.143 and
compare it with the critical value of the F-distribution at the level
of significance 0.05 with (5, 6) degrees of freedom, which is
F0.05,5,6 = 4.39. As we have F << F0.05,5,6, the null hypothesis is
rejected. This result suggests that the set of processes parame-
terized in the reduced model R, being a subhypothesis of model
G, is sufficient to describe the processes underlying the considered
data sets.
Accordingly, given equal biological plausibility and utility to

inform future experiments, the more parsimonious model ranks
higher. Importantly, such ranking is far from providing a proof of
validity, which can be approached only when a critical body of
biological data becomes available.
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Fig. S1. Biological schemes of the extended versions of the core model for BrdU and CFSE data assimilation. (A) Adaptation of the model for BrdU-labeling
data analysis. (B) Adaptation of the model for CFSE dilution.
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Fig. S2. Observation data: Blocks of experimental datasets used for model identification and validation. (A) The overall kinetics of T-cell expansion in lymph
nodes of mice for 300 and 30,000 of antigen-specific CD4 T cells homing to the LNs. (B) The proportion of BrdU incorporation for 300 and 30,000 CD4 T
precursors. (C) Proliferation profile via CFSE-label dilution. (D) The magnitude and factor of expansion at day 7.
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Table S1. Model parameters, their best-fit estimates, and 95% confidence intervals

Parameter Notation (units) Best-fit estimate
95% confidence

interval

Net proliferation rate of CD4 T cells at initial stage X1 p1 (d−1) 0.81 [0.80*, 1.12]
Net proliferation rate of CD4 T cells at transit stage X2 p2 (d−1) 2.0* [1.0, 2.0*]
Death rate of proliferating CD4 T cells d (d−1) 0.95 [0.45, 1.0]
Maximal effect parameter of cell crowding on proliferation rate γ 5.0 × 10−4 [0, ∞)
Threshold cell number for the onset of the effect of cell crowding
on proliferation rate

c (cell) 2.8 × 105 (0, ∞)

Constitutive maturation rate of proliferating cells α1 (d−1) 0.0038 [0, 0.23]
Rate constant of the feedback-regulated maturation of proliferating cells α12 (d−1·cell−1) 0.06 [10−4, >1010]
Constitutive differentiation rate of proliferating cells into
nonproliferating stage

α2 (d−1) 0.001* [10−3, >1.0]*

Rate constant of the feedback-regulated differentiation of proliferating
cells into nonproliferating cells

α22 (d−1·cell−1) 0.023 [3 × 10−4, >1010]

Constitutive terminal differentiation rate of nonproliferating cells β1 (d−1) 0.5 [10−3, >1.0]*
Rate constant of the feedback-regulated terminal differentiation of
nonproliferating cells

β12 (d−1·cell−1) 9.0 × 101 [0, ∞)

Threshold nonproliferating cell number for the onset of the saturation
in the maturation rate of proliferating cells

θx1 (cell) 2.4 × 101 [<10−10, ∞)

Threshold nonproliferating cell number for the onset of the saturation
in the differentiation rate of proliferating cells

θx2 (cell) 3.5 × 102 [<10−10, ∞)

Threshold nonproliferating cell number for the onset of the saturation
in the maturation rate of nonproliferating cells

θz (cell) 8.9 × 10−2 (0, ∞)

Death/migration rate of terminally differentiated cells δ (d−1) 0.59 [0.21, 1.25]

*Lower or upper bound constrained estimation.

Table S2. Parameters of the parsimonious model with their best-fit estimates and 95% confidence intervals

Parameter Notation (units) Best-fit estimate
95% confidence

interval

Net proliferation rate of CD4 T cells at initial stage X1 p1 (d−1) 0.80* [0.80*, 1.02]
Net proliferation rate of CD4 T cells at transit stage X2 p2 (d−1) 2.0* [1.17, 2.0*]
Death rate of proliferating CD4 T cells d (d−1) 0.99 [0.41, 1.0*]
Constitutive maturation rate of proliferating cells α1 (d−1) 0.0059 [0.0018, 0.104]
Rate constant of the feedback-regulated maturation of
proliferating cells

α12 (d−1·cell−1) 0.012 [9 × 10−4, 90]

Constitutive differentiation rate of proliferating cells into
nonproliferating stage

α2 (d−1) 0.001* [10−3*, 0.35]

Rate constant of the feedback-regulated differentiation of
proliferating cells into nonproliferating cells

α22 (d−1·cell−1) 0.045 [4 × 10−3, 0.25]

Constitutive terminal differentiation rate of nonproliferating cells β1 (d−1) 0.52 [0.15, 1.0*]
Threshold nonproliferating cell number for the onset of the
saturation in the maturation rate of proliferating cells

θx1 (cell) 842 [0.05, 5.2 × 103]

Death/immigration rate of terminally differentiated cells δ (d−1) 3.45 [0.51, 17.2]

*Lower or upper bound constrained estimation.

Table S3. Clonal expansion and contraction of transgenic 5C.C7 CD4 T cells adoptively transferred
into B10.A mice (either 5,000 or 500,000 cells) and then immunized with 100 μg PCC/25 μg LPS

Time after immunization, d No. of antigen-specific CD4+ T cells in LNs

0 3 × 102 3 × 104

2 2.70 × 103 [1.12, 6.51] × 103 3.066 × 105 [2.44, 3.86] × 105

(SS = 3) 3.43 ± 0.089 [3.05, 3.81] 5.49 ± 0.023 [5.39, 5.59]
3 1.14 × 104 [0.53, 2.43] × 104 2.35 × 105 [1.93, 2.86] × 105

(SS = 2) 4.06 ± 0.026 [3.73, 4.39] 5.37 ± 0.007 [5.29, 5.46]
6 1.24 × 104 [0.11, 14.22] × 104 —

(SS = 2) 4.09 ± 0.083 [3.03, 5.15]
7 1.77 × 104 [0.81, 3.85] × 104 2.08 × 105 [1.39, 3.12] × 105

(SS = 16) 4.247 ± 0.159 [3.91, 4.59] 5.318 ± 0.083 [5.14, 5.49]
(SS = 17)
10 4.40 × 103 [0.07, 262.0] × 103 1.28 × 105 [0.78, 2.11] × 105

(SS = 2) 3.64 ± 0.14 [1.87, 5.41] 5.11 ± 0.017 [4.89, 5.33]

The data are given both as geometric mean (GM) (with 95% confidence intervals) and arithmetic mean (AM) ±
SEM of the log of the individual measurements with sample sizes (SS) ranging from 2 to 17 depending on the time.
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Table S4. Proportion of BrdU incorporation during clonal expansion and contraction of transgenic
5C.C7 CD4 T cells adoptively transferred into B10.A mice (either 5,000 or 500,000 cells) and then
immunized with 100 μg PCC/25 μg LPS

Time after immunization, d

No. of antigen-specific CD4+ T cells in LNs

3 × 102, % BrdU+ 3 × 104, % BrdU+

3.5 60.5 40.4
4.5 58.1 23.2
5.5 24.5 10.7
6.5 17.9 15.1
7.5 13.5 8.5

The data represent the arithmetic mean (±SEM) of the individual measurements from five mice.

Table S5. CFSE dilution during clonal expansion and contraction of transgenic 5C.C7 CD4 T cells
adoptively transferred into B10.A mice (either 5,000 or 500,000 cells) and then immunized with
100 μg PCC/25 μg LPS

Time after
immunization, d

No. of antigen-specific CD4+ T cells in LNs

3 × 102 3 × 104

CFSE 0–5 divisions CFSE >7 divisions (%) CFSE 0–5 divisions CFSE >7 divisions (%)

5 1.63 × 102 8.821 × 103 (98) 3.439 × 104 2.44 × 105 (87)
7 0 4.043 × 104 (100) 1.01 × 102 2.00 × 105 (99)

Table S6. Clonal expansion size evaluated at day 7 postimmunization with 100 μg PCC/25 μg LPS of transgenic 5C.C7 CD4 T cells
adoptively transferred into B10.A mice

Clonal expansion

No. of antigen-specific CD4+ T cells in LNs

3 (SS = 20) 3 × 10 (SS = 10) 3 × 102 (SS = 44) 3 × 104 (SS = 18)

Magnitude
(cells)

4.541 × 103 [2.968, 6.946] × 103 1.402 × 104 [1.14, 1.72] × 104 — —

3.657 ± 0.088 (GM) 4.147 ± 0.04 (GM)
Factor of
expansion

1.514 × 103 [0.99, 2.315] × 103 4.67 × 102 [3.81, 5.74] × 102 (AM) 1.357 × 102 ± 0.139 × 102 (AM) 1.25 × 101 ± 0.16 × 101

3.657 ± 0.203 (GM) 6.147 ± 0.091 (GM)

AM, arithmetic mean; GM, geometric mean; SS, sample size.

Table S7. Latin hypercube sampling-based analysis of the partial rank correlation between the
model parameters and the FE for low and high PN

Model parameter Correlation coefficient, 3 × 102 cells Correlation coefficient, 3 × 104 cells

p1 0.91 0.91
p2 −0.27 0.12
d −0.007 −0.0009
γ −0.006 0.002
c −0.006 −0.009
α1 −0.25 −0.19
α12 −0.39 −0.76
α2 −0.14 −0.11
α22 −0.56 −0.47
β1 −0.24 −0.28
β12 −0.66 −0.66
θx1 −0.37 −0.74
θx2 −0.39 −0.39
θz −0.63 −0.65
δ −0.17 −0.34
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