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SI Text
Elastic Wave Velocities for Silicon in the Lateral Plane. For the slab
orientation in this experiment, the elastic wave propagation will
be in the lateral plane defined by the [100] and ½01̄1� vectors (i.e.,
in the cube-face diagonal). Because silicon is anisotropic, three
wave polarizations will exist, one longitudinal and two transverse,
with three different speeds all uniquely defined by the stiffness
constants of c11, c44, and c12 (1)
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where
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cos2 θ
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þ ðc11 þ c44Þ sin2 θ; [S4]

C ¼ ðc11c011 − c212 − 2c12c44Þ sin2 2θ þ 4c44ðc011 cos4 θ þ c11 sin4 θÞ;
and
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Here, ρ is the mass density of silicon and θ is the angle from the
½01̄1� direction. The υ1 is the pure-shear mode (the wave under
consideration), υ2 the quasi-shear, and υ3 the quasi-longitudinal.
(Quasi-shear and quasi-longitudinal waves become pure shear
and longitudinal for propagation along the high-symmetry axes,
such as the [100].)

These equations can be numerically evaluated by using
the known values of ρ ¼ 2.33 g∕cm3, c11 ¼ 16.57 × 1010 N∕m2,
c44 ¼ 7.95 × 1010 N∕m2, and c12 ¼ 6.39 × 1010 N∕m2 for silicon.
Fig. S1 shows the results. Here, [011] is used instead of ½01̄1�
because they are identical due to the cubic crystal symmetry.
The transverse polarizations are 30% slower than longitudinal
ones. Moreover, due to crystal anisotropy, the speeds are mod-
ified with propagations direction by 10% and 20% for longitudi-
nal and transverse modes, respectively. Note that the known
speed of sound for silicon is 8.4 km∕s, that is, the velocity of
quasi-longitudinal wave along [100].

Projection of an Arbitrary Polarization Vector on the ð114Þ Diffraction
Plane. Let us define the orthonormal axes of the reciprocal space
as follows:
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Ŷ ¼ ½13 5 2�ffiffiffiffiffiffiffiffi
198

p ; and [S8]

Ẑ ¼ ½1̄14�ffiffiffiffiffi
18

p : [S9]

Then, the projections of orthonormal slab coordinates, i.e., ê1 ¼
½100�, ê2 ¼ ½011�∕ ffiffiffi

2
p

, and ê3 ¼ ½01̄1�∕ ffiffiffi
2

p
on X̂ , Ŷ , Ẑ are given by

ê1 ¼ 0.301X̂ þ 0.924Ŷ − 0.236Ẑ; [S10]

ê2 ¼ −0.426X̂ þ 0.352Ŷ þ 0.833Ẑ; and [S11]

ê3 ¼ 0.853X̂ − 0.151Ŷ þ 0.500Ẑ: [S12]

An arbitrary polarization vector in the sample coordinate system,
~U ¼ u1ê1 þ u2ê2 þ u3ê3, can be transformed to the measurement
system, as (by Eqs. S10–S12)

~U ¼ ð0.301u1 − 0.426u2 þ 0.853u3ÞX̂
þ ð0.924u1 þ 0.352u2 − 0.151u3ÞŶ
þ ð−0.236u1 þ 0.833u2 þ 0.500u3ÞẐ: [S13]

For compressional motions (or longitudinal waves), one can mea-
sure all three components of ~U by the position of Bragg reflec-
tions. Hence, u1, u2, u3 can be uniquely determined by Eq. S13.
As noted in the text, we do not observe dynamics on the position
of high-order-Laue-zone stripes, but only the exponential inten-
sity decay.

For shear motions, the projection rules are the same. From
Kikuchi dynamics, one can experimentally measure the X̂ and
Ŷ components; for the shear-horizontal eigenmode of the acous-
tic waveguide, the vertical polarization is zero (i.e., u2 ¼ 0). In
fact, the shear-vertical waves do not totally reflect from the
Si–vacuum interface, so they are not expected to propagate inside
the slab. Then one can uniquely determine u1 and u3 from
Eq. S13,

0.301u1 þ 0.853u3 ¼ 0.25; [S14]

0.924u1 − 0.151u3 ¼ 0. [S15]

These equations can be solved for u1 ¼ −0.05 and u3 ¼
0.31 mrad. The primary polarization is along u3 ¼ ½01̄1� as we
obtained from the phase and amplitude images of the Fourier
transform in the main report.

Elastic Waveguide Modes of Shear-Horizontal Waves. The waveguide
dispersion relation of a slab is given by Eq. 2 of the manuscript,
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where υs is the transverse wave velocity from Fig. S1, b ¼ 130 nm,
and n the order of the mode. This equation is plotted in Fig. S2
for n ¼ 0, n ¼ 1, and n ¼ 2. The horizontal dashed line at the
experimentally observed frequency of 33 GHz intersects only
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the first two dispersion curves, hence it is the n ¼ 0 and n ¼ 1

modes that can be supported by the slab.

Flexural Motions of the Silicon Slab.One concern might be that the
observed dynamic could be a result of the flexural motions of the
slab. In order to disregard this possibility, we have calculated the
eigenfrequencies of the these modes by means of the finite ele-

ment analysis. Because the slab had a wedge angle, a numerical
computation was the optimum approach.

Fig. S3 depicts the displacements of the first and third flexural
eigenmodes of the silicon slab. Frequencies are in the megahertz
range, 5 orders of magnitude less than our experimental observa-
tions, which dismisses the possibility of measuring these deforma-
tions, and consistent with the previously observed time scales of
flexural motions in nanostructures (2, 3).
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Fig. S1. Elastic wave speeds for three polarizations in crystalline silicon as a function of the propagation direction. The plane of propagation is defined by
[011] and [100]. Black arrows indicate the high-symmetry directions.
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Fig. S2. Dispersion curves of the first three modes of shear-horizontal elastic waves in a silicon slab. The units of the axes are frequency (ω∕2π) and wave-
number (k==∕2π). The dashed horizontal line indicates the observed resonance frequency.

Fig. S3. The first (at 0.3 MHz) and third (at 0.7 MHz) flexural modes of the silicon slab simulated by the finite element method. A commercially available
software package (COMSOL) was used. Slab dimensions are 500 × 500 μm and the slab has a 4° wedge. The total displacement is color coded as shown in the
color bar.
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