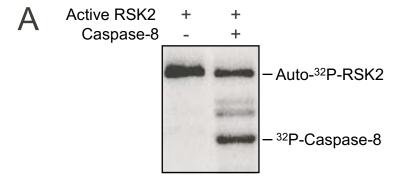
Supplemental Data

Supplemental Figure Legends

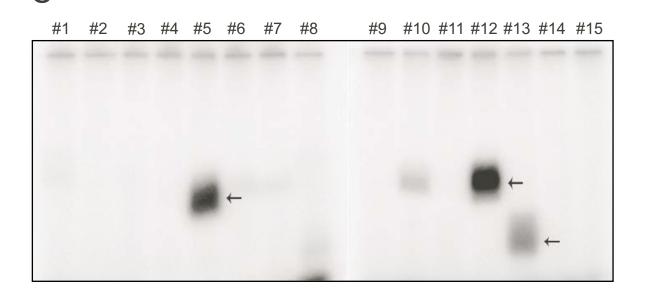
Supplemental Fig. 1. RSK2 phosphorylates caspase-8 *in vitro*. (A) RSK2 phosphorylates caspase-8 *in vitro*. Wildtype His-caspase-8 proteins (5 μg) were purified from BL21 bacteria and subjected to an *in vitro* kinase assay with active RSK2 (100 ng) and 10 μCi of [γ -³²P] ATP and 50 μM unlabeled ATP. The reaction mixture was resolved by 10% SDS-PAGE and the phosphorylated caspase-8 was visualized by autoradiography. (B) Amino acid sequences for peptide synthesis. (C) Identification of the RSK2 phospho-target amino acid of caspase-8. Peptides (5 μg) synthesized in B were used for an *in vitro* kinase assay with active RSK2 (100 ng) and 10 μCi of [γ -³²P] ATP and 50 μM unlabeled ATP. The reaction mixture was resolved by 20% SDS-PAGE and phosphorylated caspase-8 was visualized by autoradiography. (D) Mutant caspase-8-T263A, but not mutants S119A or S256A, affects caspase-8 phosphorylation *in vitro* as determined by Western blot. An *in vitro* kinase assay was performed with caspase-8-wt or caspase-8 mutants together with active RSK2 (100 ng) and 200 μM unlabeled ATP. The phosphorylated caspase-8 was visualized by Western blot with a p-S/T antibody.

Supplemental Fig. 2. Overexpression of RSK2 induces caspase-8 degradation.

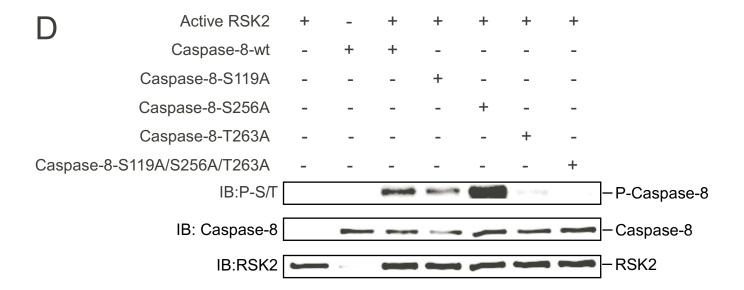
(A) RSK2 enhances caspase-8 degradation. RSK2 was transfected into HeLa cells and cells were cultured for 30 h. The cells were treated with cyclohexamide (CHX, 30 μ g/ml) for the indicated time and proteins were extracted. The caspase-8 protein abundance was visualized by Western blot with a casapse-8 antibody. (B) RSK2 induces caspase-8 degradation through proteosomal-mediated caspase-8 degradation. RSK2 was transfected into HeLa cells and cells cultured for 30 h. The cells were pre-treated with MG-132 (20 μ M) for 1 h and then treated with CHX (30 μ g/ml). The caspase-8 protein level was visualized by Western blot using a caspase-8 antibody.

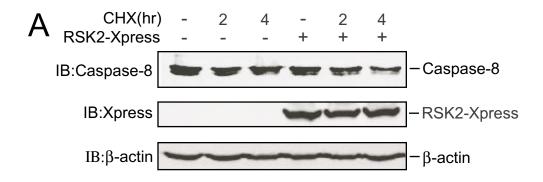

Supplemental Fig. 3. Phosphorylation of Thr263 plays an important role in caspase-8 ubiquitination. HeLa cells were co-transfected with caspase-8, caspase-8-S119A, caspase-8-S256A, or caspase-8-T263A along with HA-Ub and RSK2. Transfected cells were cultured for 30 h and then proteins were extracted. The caspase-8 proteins were immunoprecipitated with anti-V5 and the ubiquitinated caspase-8 proteins were visualized by Western blot with anti-HA.

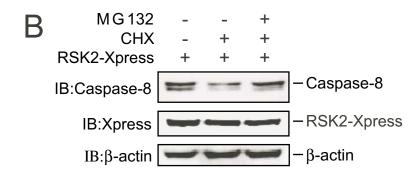
Supplemental Fig. 4. Fas induces significant apoptosis in Jurkat A3 cells


Jurkat A3 cells were exposed to anti-Fas (200 ng/ml) for 6 h and then subjected to apoptosis analysis by Annexin V and propidium iodide (PI) staining using flow cytometry (bottom). Data are represented as means \pm S.D. of the percent Annexin V positive cells

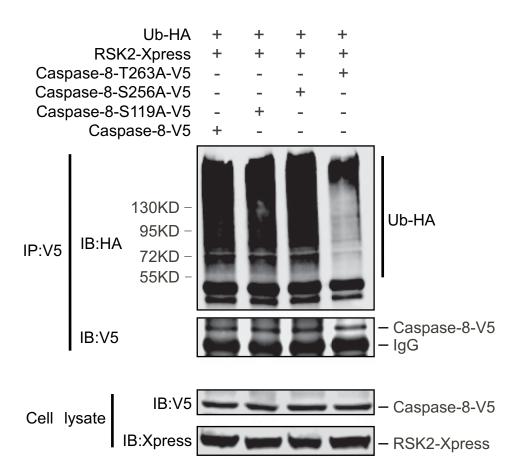
determined from triplicate experiments. The asterisk (*) indicates a significant difference (p < 0.05 Student's t test; bottom).


Supplementary Figure 1 A-C

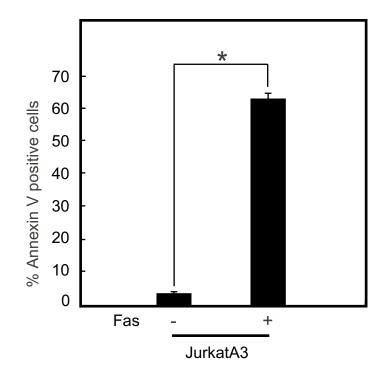

В	Dontido numbor	Position	Score	Mutation	Saguenae
	Peptide number	Position	Score	เงเนเสแอก	Sequence
	#1	S21	0.901		EDLA S LKFLDYIP
	#2	T92	0.955		EEMERELQ T PGRAQI
	#3	S113	0.996	S115A,S119A	EEV <u>S</u> RAELRAFKFLL
	#4	S115	0.938	S113A,S119A	EEV A R <u>S</u> ELR A FKFLL
	#5	S119	0.974	S113A,S115A	EEV A R A ELR S FKFLL
	#6	S182	0.994		LLKIINDYEEF <u>S</u> KER
	#7	S187	0.997	S118A,S192A	AKERA S ALEGAPDEF
	#8	S188	0.997	S187A,S192A	AKERA A<u>S</u>LEGA PDEF
	#9	S192	0.99	S187A,S188A	AKERA AA LEG <u>S</u> PDEF
	#10	S211	0.998		LCGVMAIAD <u>S</u> PREQD
	#11	S217	0.982		PREQD <u>S</u> EAQALDKVY
	#12	S256	0.959		REKVPKLH <u>S</u> IRDRNG
	#13	T263	0.806		IRDRNGTHLDAGALA (RXRXXS/T)
	#14	S375	0.981		GIPVEAD S EEQPYLE
_	#15	S451	0.985		EVNYEV <u>S</u> NKDDKKNM



Supplementary Figure 1D



Supplementary Figure 2 A-B



Supplementary Figure 3

Supplementary Figure 4

