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ABSTRACT An analog model neural network that can
solve a general problem of recognizing patterns in a time-de-
pendent signal is presented. The networks use a patterned set
of delays to collectively focus stimulus sequence information to
a neural state at a future time. The computational capabilities
of the circuit are demonstrated on tasks somewhat similar to
those necessary for the recognition of words in a continuous
stream of speech. The network architecture can be understood
from consideration of an energy function that is being mini-
mized as the circuit computes. Neurobiological mechanisms
are known for the generation of appropriate delays.

Recognizing the pattern in a time-dependent signal is impor-
tant in hearing and vision. The tasks of recognizing individ-
ual spoken phonemes or words in a continuous stream of
speech can be effortlessly and rapidly done by any speaker
of a language. If the motion of a walking human is replaced
by the pattern of motions of a few dots representing parts of
the body we immediately identify the dynamic pattern as
"person walking" in spite of our complete inability to recog-
nize "person" from any single frame of such a movie. Al-
though such tasks are simple for us, they are very difficult
for present digital computers. Appropriate modeling of neu-
ral networks may suggest how nervous systems solve such
problems as well as provide a description of artificial neural
networks for the task.
Using networks to recognize regularity in a temporal se-

quence of input stimuli has been previously studied. Reis (1)
used time delays to make bandpass filters from simple net-
works of three or four formal neurons. Kohonen (2) studied
neural networks that operate as finite-state machines gener-
ating a sequence of states. An input pattern produces an out-
put pattern that is used as a partial input pattern at the next
system iteration. A temporal associative network has been
studied by Fukushima (3). Related networks have been re-
cently studied by Kleinfeld (4) and Sompolinsky and Kanter
(5) as sequence generators, which might be used to recognize
simple sequences by supplying inputs to help drive the net-
work from one state to another. Sequence recognition by
completion has also been studied in a neural network model
by Rumelhart et al. (6).

Despite this work, neural network architectures that em-
ploy dynamics to continuously recognize sequences distort-
ed in time and form have remained elusive. This problem is
addressed in the present work. It is illustrated by two se-
quences, in which each letter A, B, C represents a particular
momentary stimulus state, with the time duration of the
stimulus states represented by letter repetitions. Let the first
row represent a model known stimulus sequence.

S SEEEERIIEZZZ
THHSSEARREEZSSOO UNNDZ

The second row embeds a distortion of this sequence (under-
lined) in a continuous data stream. The task is to recognize

the presence of the model known sequence in this stream.
(Real problems will generally have continuous time and con-
tinuous patterns to deal with, but the general idea is more
easily seen in discrete examples.) Difficulties include (i)
where to start the comparison (word-break problem) and (ii)
given a starting point, different examples of the sequence
may be distorted in time (time-warp problem) and in form
(erroneous symbols). Here and in the following, our illustra-
tions of the generic problem use time-dependent symbolic
stimulus sequences suggestive of speech, but highly ab-
stracted from real speech.
We would like to recognize sequences in such a data

stream as a whole. Such recognition implicitly involves com-
paring known exemplar sequences, distorted in time and
form, with the data stream and finding a "best fit." This can
be done with serial algorithms (see, for example, refs. 7 and
8) but is computationally intensive. The isolated sequence
problem could be rapidly solved if the only problem were
time warp, for then the order of stimuli alone is a reliable
description of the sequence. But when the symbols are not
accurate, elementary sequential search is not useful. Series-
to-parallel conversion followed by the use of an associative
memory is not a solution since it merely converts the time-
warp problem into an equivalent space-warp problem. Using
dynamic circuits that sequentially generate the exemplar se-
quences leads to an inadequate sequential analysis rather
than a recognition of the whole.

Concentrating Information in Time

A network that solves sequence recognition problems must
temporarily store information about the data stream to make
a recognition of the whole. Suppose a holistic decision is
made at time t that sequence S has just occurred, and the
data stream of S lasts a time r. Information in the data stream
between time t - X and time t must have been implicitly
stored for availability at t. If a subset of the units in a net-
work is to be strongly driven, and to turn "on" at time t to
indicate that S occurred, then this information must be con-
centrated on those units in space and in time. (A similar con-
centration of information in time is used in chirp-frequency
radar ranging.)
The neural network sequence detector we describe here

has a set of "delay" filters, one for each known sequence.
Each filter has a strong output during a relatively short time
at the end of its sequence. These outputs drive a nonlinear
neural decision network, whose outputs, changing in time,
describe the position of the various sequences in the data
stream. The following section of the paper develops the con-
cept of an energy function as a design tool for such a net-
work; the section after presents the network design and illus-
trates its use.

Time-Dependent Energy Surfaces

An energy function (E) is useful in understanding how cir-
cuits of neuron-like elements compute solutions to optimiza-
tion problems (9). The circuits follow trajectories in their
state space that minimize E. In many cases, minimization of
E can be related to the minimization of a cost function for an
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optimization problem (10, 11). This provides a procedure for
designing and understanding a circuit that solves the prob-
lem.
The original E function formulation is not applicable for

time-dependent inputs. However, the usefulness of an E can
be extended to the time-dependent domain. In the more gen-
eral case in which E has an explicit time dependence

= -~~ dE aE dVE = E(V, t) and - = - +Vv[1]dt at dt~-
The output Vi of neuron i is related to its input ui by the
nonlinear input-output relationship Vi = g(u,). Choosing a
circuit dynamics described by:

dt
implies

dE
=

8E [lydV12 3

dt at (g9) [dtJ' [3]
so that the contribution to dE/dt produced by the motion of
the circuit (the second term) is still always negative, as in the
earlier described case (9, 10), if the inverse input-output
function (ui = g-'(Vi)) is monotone increasing. Eq. 2 implies
that the "force" on the circuit is always in the generally
"downhill" direction. (Eq. 2 is formally equivalent to me-
chanics with viscous drag, where force is proportional to ve-
locity.) A geometrical picture of computation with time-de-
pendent inputs can be obtained using a "space-time" E sur-
face like the one illustrated in Fig. 1. E is plotted for all
points in a combined space of the circuit's state variables
and time. In Fig. 1 only one state space dimension is drawn.
There are valleys along the state space axis at each time
point. The spatial positions of these valleys are determined
by the history of data in the problem and change with time in
a continuous fashion. Due to the relationship between
dynamics and VvE given in Eq. 2, the circuit will be pushed
at each time point toward a valley in its state space. A com-
putation can be performed by a time-dependent E function if
the data of the problem produce a channel on the space-time
surface that guides the circuit trajectory to a position appro-
priate to the correct solution.

This conceptual framework can be used to design neural
circuits based on the intuitive idea described earlier of using
a set of delay filters as a sequence detector. We desire an E
for which the presentation of a known sequence of stimuli
builds a deep pit on the space-time E surface, with a wide
valley leading to it. The pit is centered on a time point t *
near the expected completion of the presented sequence.
The state space location at the pit is to be that that codes for

vnewmexico
recognized I~ ~

' ~ I

FIG. 1. Representation of an E surface for space time, illustrat-
ing the computation performed in recognizing two sequences.

the recognition of the sequence. The appropriate E will pro-
vide the prescription for the physical circuit that solves the
task.

Let exemplar sequence S'(t) be described by the stimuli
sequence [Si(l) = A, S1(2) = B, . . ., S'(n) = E], where A, B,
... . E represent distinct stimulus states in the data stream
and where, in general, S(m) = X implies that generic stimu-
lus X is present in time bin m in the exemplar. We define the
functions Dx(t) as:

Dx(t) = 1 if stimulus X is present at t;
= 0 otherwise. [4]

Dx(t) formally represent the outputs of stimulus detectors
tuned to different stimuli X from the set {A, B, . . ., E, . . .

Assume that we want neuron i, with output Vi between 0 and
1, to be activated (Vi = 1) when a sequence of stimuli rather
like Si is detected.
When a stimulus X in S' is detected, an appropriate term in

E can contribute to a channel on the space-time E surface
leading to the state Vi = 1. The necessary term in E, written
in a form that combines similar evidence for Si from other
detected stimuli [Dx(t)] is:

8E = Vi EI I TiX;kk(T)DX(t - T)dT,
X k

[5]

with Tix;k = 1 if stimulus X occurs in Si in a time bin k units
prior to sequence completion and is 0 otherwise. The fk(r)
are continuous delay functions sketched in Fig. 2a with the
index k proportional to the mean time delay. (See Eq. 11 for
a specific example.) The time-independent coefficient Tar;k

(a)

(b) DETECTORS
,_DA. . . x

SEQUENCE
RECOGNITION

UNITS

FIG. 2. (a) Set of delay functions used in the simulations de-
scribed in the text for k = 1, 2, . . ., 10. (b) Sequence recognition
circuit described by Eq. 11 in the text.
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represents the "synaptic" strength of the coupling, with
mean delay k, between the output of Dx and the input of
neuron i. The "force" on neuron variable Vi due to the term
in Eq. 5 is

__i = kI TiX;kfk(T)DX(t- T)dT, [6]

so that a presentation of stimulus X results in a postsynaptic
effect on neuron i given by the convolution of theX detector
output and the delay function fk(T), scaled by Tix;k. When
TiX;k is positive, the corresponding term in BE in Eq. 5 con-
tributes to a pit on the space-time E surface spatially cen-
tered in the subspace Vi = 1 and elongated in time due to the
temporal spread in fk(T). Since the breadth of the fk(M) is
longer for larger k, corresponding to longer mean delay
times, the early stimuli in the sequence produce longer con-
tributions on the E surface. The scaling of latency with posi-
tion in the exemplar sequence insures that each stimulus can
contribute to the same pit. Because the delays have a contin-
uous "probability" amplitude, a valley of considerable depth
occurs at sequence completion even if the presented se-
quence is a time distortion of the exemplar. (The form of the
delay functions can be related to a Bayesian analysis of ex-
pected exemplar distortions-see below.) The pit depth is a
measure of the evidence that sequence S' was presented to
the network. Evidence from detected stimuli against a given
exemplar can be similarly treated by inhibitory connections
(TiX;k < 0) that build mounds on the E landscape. In this
way, erroneous symbols in the data stream of a distorted
exemplar only add noise to the energy landscape, gracefully
degrading the network performance. The contributions to E
in Eq. 5 above describe the synaptic connections with a de-
layed postsynaptic effect from a set of stimulus detectors
[Dx(t)] to a set of "grandmother" neurons whose state re-
flects the evidence that the stimulus train to which it is tuned
has driven the system of detectors. A mutual inhibition con-
tribution to E(V, t) of the form

BE = +-E E ViVi [7]
2 i j+i

insures that only one sequence at a time is detected with
certainty (Vi = 1). To prevent nonexemplar sequences from
activating the network, appropriate global inhibition (Eq. 8)
will set a threshold for activation:

Cdu !Cd= - -i_E aV. - y
dt R

+ E f2 TiX;kfk(T)DX(t- T)dT. [10]

C and R are the input capacitance and resistance of the rec-
ognition neurons. The delay functions fk(Ir) and the Tix;k are
chosen to detect particular exemplar sequences S'. The first
term in E (Eq. 9) results merely in a time-dependent input
[Ii(t)] in the circuit equation [10].
We studied a specific circuit designed to recognize the se-

quences of letters in the names of the 50 states of the United
States. For simplicity, the functional form of the delay func-
tions is chosen as:

fk(t) = 3()n e
k

[11]

P = en normalizes the amplitude of the peak response. (In
these experiments, n = 5-10.) As before, we let the letters A,
B, C represent momentary stimulus states X, with one time
unit per letter. The exemplar sequences determine the con-
nection strengths (Tix;k) by Eq. 5. For example, consider the
exemplar sequence (ARIZONA) and assign unit i with output
Vi as the word recognizer unit for this signal. Since A is the
first entry in the sequence, TiA;6 = 1 provides a delayed input
to i centered on 6 time units. Since A is also in position 7,
T4A;O = 1 provides additional input to unit i with no (k = 0)
delay. This procedure also generates the set of connections
TiA;6 = TWO = TiR;5 =Ti;4 = TiZ;3= Tio;2 = TiN;1 = 1. The
construction is repeated for each "state" sequence and its
corresponding recognition unit. All other connections were
set to a small negative value providing weak inhibition for
exemplar detection by the presence of erroneous symbols,
not part of the exemplar, in the data stream.
Computer simulations of the network were performed by

numerically integrating Eq. 10 for different input sequences.
(See Fig. 3 legend for specific parameter values.) In Fig. 3a,
the outputs Vi are plotted versus time for presentation of the
stimulus pattern (NEWMEXICO WASHINGTON). The out-
puts of all 50 word units Vi are superimposed, with those of
the most active units individually labeled. All units remain

(a) Vnewmexico Vwashington

6E= +y>L Vi [8]

The total E function for the sequence detector network is

E Vi [ Tr;k(T)DX(t-)dT

+2EEViVji+Ey,+ 2 - gi-'(V)dV [9]

The significance of the gain term (last term in Eq. 9) has been
discussed (10). E is the cost function for a time-dependent
optimization problem of choosing the best match of the
known exemplar sequence Si to the presented signal, which
is embodied in the pattern in time provided by the detector
outputs Dx(t). The network will report out a decision only
when the evidence is adequately large. At that time, E is
minimized by the state Vi 1 for the best-match sequence
Si,and all other V- 0. At other times, all Vi will be small.

Applying the Circuit to Noisy and Time-Warped Sequences
By Eq. 2, the E function describes the physical circuit in Fig.
2b. The input potentials ui of the recognition neurons are
determined by the continuous dynamics:

5- C

newme xi c o wa s h i n g t o n
I I I I.

0 5 10 15 20 25 30
TIME

( b VVidaho Vwashington

).5-

d d e h h o u t q h w a h h a n g g t t o n n

0 5 10 15
TIME

20 25 30

FIG. 3 (a and b) Outputs of the sequence recognition neurons for
indicated input sequences. The outputs of all 50 neurons are super-
imposed. For units that are activated by the sequence, the exemplar
sequences to which they are tuned are indicated. The circuit param-
eters were: C = 1.0; T= RC = 0.5; a = 3.0; y = 2.5; Vi = g(ud) =
1/2[1 + tanh(u1/0.5)]. For each neuron i, the excitatory inputs TiX;k
described in the text were scaled by i/I,, where 1i = length of se-
quence S'. Inhibitory connections were scaled by -0.51/i.,
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near Vi = 0 early in the sequence presentation. As the pre-
sentation of the sequence NEWMEXICO proceeds, the
NEWMEXICO unit that correctly corresponds to the detec-
tion of this sequence is activated. Shortly after termination
of NEWMEXICO, the activity in the NEWMEXICO unit
drops to baseline. Near the completion of the WASHING-
TON sequence, the WASHINGTON recognition unit simi-
larly becomes briefly activated. This perfect recognition in
the absence of distortions is observed for all 50 state exem-
plar sequences.

Fig. 3b illustrates that the circuit is insensitive to time
warp, erroneous symbols, and lack of word breaks. The ac-
tual sequence presentation is based upon the string of exem-
plar sequences [(IDAHO)(UTAH)(WASHINGTON)]. How-
ever, the expected sequence of letters has been distorted in
time and form by repetition, deletion, and insertion (e.g., the
exemplar IDAHO is distorted to IDDEHO) and there are no
spaces or breaks between sequences. Despite time warp, er-
roneous symbols, and the absence of spaces between the
presentation of the individual sequences, the correct word
recognition units are activated.

Why Does the Circuit Work?

Fig. 1 shows a projection of the time-dependent E surface
explicitly calculated for the network already described when
the sequence NEWMEXICO WASHINGTON is presented.
There should be 51 dimensions to this surface (50 space di-
mensions, one for each recognition variable, and 1 time di-
mension), but we can plot only a two-dimensional surface.
During the stimuli presentation, Vj other than VNEWMEXICO
(VN) or VWASHINGTON (Vw) have negligible values. The three
axes drawn in Fig. 1 are E, time, and (VN - Vw) for [(VN +
Vw) = 1]. The latter axis corresponds to a projection along
the line between VN = 1, VW = 0 and VN = 0, VW = 1, the
two points representing the detection of NEWMEXICO and
WASHINGTON, respectfully. At early times, there are
weak valleys at the two ends of this coordinate due to the
lateral inhibition, but there is a true deep minimum in E in
the four-dimensional space time (VN, VW, t, E) at VN = VW
= 0 (not shown on this projection). As time goes on, a deep
minimum begins to form near VN - VW = 1 due to the fact
that the initial incoming data look like NEWMEXICO, and a
maximum forms at the other end of this coordinate because
the early data do not correlate with WASHINGTON. These
trends continue until a coherent minimum is obtained at the
completion of the first known string. After that, the signal
from the early data decays, and the additional data begin to
correlate with WASHINGTON. This lowers the energy at
the WASHINGTON end of the spatial coordinate, near the
time for the expected completion of WASHINGTON. The
trajectory drawn on the energy surface is the projection of
the motion of-the state of the system [Vv(t) - Vw(t)] on the
energy surface and shows sequential recognition of the two
sequences. Considerable reductions in depth due to time dis-
tortions can be tolerated before the energy landscape is so
modified that the wrong decision is made or a word is not
recognized.

Bayesian Interpretation of the Connections

A systematic choice of time-delay functions is possible if in-
formation about the nature of the likely time distortions is
available. A typical known exemplar sequence S' is sketched
in Fig. 4. Typical time-warp distortions o-' and or" differ from
S' in that individual stimuli X in the sequence differ in dura-
tion. Let P(osig1Sl) be the conditional probability that osig is
generated when a sequence S' was intended, and P(S') be
the probability of occurrence of S'. When 7sig is received,
the maximum likelihood choice of which sequence S was

A B
.aSi

CTI

CT-Il

C D E
a a I

A:: B C D E

A K B C D E
A IIIBI I E.. I I a .

s II . II I

\-v-I I
TIME BIN t*

m
TIME

FIG. 4. An exemplar sequence and two distortions that indicate
the method of computing appropriate time delay functions.

sent is that for which P(oSigiSi)*P(Si) is largest. Equivalent-
ly, one can use the maximum of ln[P(rsi5g1S)] + ln[P(S)].
{The InP[(S')] term is an amplitude factor that does not alter
the pattern of connections.} Let a sequence o.sig, consisting
of the stimuli sequence (A at bin 1, B at bin 2, . . ., X at bin
m) in a set of time bins 1, 2, 3, . . . m, be received in the data
stream. We can approximate the conditional probability dis-
tribution for distorting S' to osig as the product of m condi-
tional probability distributions of finding the various sym-
bols in the time bins, as

P(o.Si'91i) = P(A at bin 1, B at bin 2, . . ., X at bin miSi)
P1(A1Si)*P2(B1Si)*... .*Pm(XISi) [121

where Pm(XIS') is the probability of finding stimulus X in
time bin m for the ensemble of distortions expected for S1.
At time t, let the input to each sequence recognition unit i,
due to the detection of stimulusX at an earlier time bin m, be
proportional to ln[Pm(XIS')]. Then the total inputs to the rec-
ognition units will represent the probability that the se-
quence of stimuli immediately preceding t is a distortion of
its exemplar sequence S'. Unlikely distortions [Pm(XIS')
0] contribute strong inhibition, whereas common distortions
are much less inhibitory (i.e., relatively excitatory).
The width of the delay functions can be given meaning in

this representation. Suppose S1 contained stimulus A in time
bin m and different stimuli in nearby bins before and after m.
Then ln[Pmn_(AIS')], viewed as a function of n, describes
the appropriate shape of the delay function for time bin m
with respect to the termination of sequence i. For this model
of distortion, it is clear the inputs to the recognition units
should be summed over the sequence element detectors,
time-delayed excitatory and inhibitory connections are both
expected in the kind of pattern used, and the width and
height of the time delay functions are directly related to sta-
tistical models of the distortion functions. The same line of
discussion can be extended to include symbol errors and
more sophisticated networks derived for more accurate ap-
proximations than that given in Eq. 12.

Discussion

The circuits described use an organized pattern of time de-
lays to build an energy surface space-time structure that
channels the circuit trajectory to correct solutions at the
times when adequate information has been assembled. The
concept of the time-dependent energy and its geometrical in-
terpretation should lead to useful ways to program other
computations. Although the behavior described is easiest to
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understand in an adiabatic view of the motion on the time-
dependent energy surface [the input information changes
slowly compared with the basic time scale of the network
response (see also ref. 5)], the best computational behavior
need not be adiabatic. Circuits based on the idea of concen-
trating information in time but with self-input produced by
feedback over several time scales could be used to build ro-
bust sequence generators.
The circuit form we have described can be directly tested

on real speech recognition problems. Refinements will be
needed, such as a hierarchical set of networks detecting ex-
emplar sequences on several different time scales (e.g., a
subphoneme recognizer whose output would drive a pho-
neme recognizer, and so on), or additional time-delay con-
nections to represent the fact that the probability distribu-
tions are not truly factorable. For some networks of the form
described here, simple learning rules establish the correct
pattern of connections.
The kind of processing we have described requires a par-

ticular form of temporary information storage that makes
available now (through a time-delay mechanism) information
that was presented at various earlier times. Our ability to
understand speech must be based on temporary storage over
time scales at least as long as syllables and short words. Sim-
ilar comparisons may occur on different time scales in other
computations and other modalities.
Mechanisms are known within neurobiology for generat-

ing time delays of relevant durations. In avian binaural audi-
tion, differences in axon path length between contralateral
and ipsilateral fibers may generate time delays on the 10- to
100-pxsec time scale that are used for sound localization (12).
Action potential propagation delays are also likely to be of
relevance in cortical areas, such as the prepyriform cortex in
the rabbit (13, 14), where afferent and associational fibers
terminate in widely separated fields and differential delays
can be of order 10 msec. Synaptic delays in functional
"chains" of neurons could also contribute to propagation de-
lays. On longer time scales, slow synaptic transmission (15),
ion channel desensitization, and other electrochemical and
biochemical changes occur in nerve cells that could be effec-
tively used as time delays. Responses delayed up to 0.2 sec
have been observed following postinhibitory rebound (16).
Latencies as long as 0.5 sec following brief auditory stimula-
tion have been measured for neurons in AI cortex of behav-
ing monkeys (L. Kitzes, unpublished data). Our results sug-
gest an important computational function for these time-de-

lay generating systems in processing signals that vary in time
and suggest a thorough study of long-delay generators in au-
ditory and early postauditory areas.
The model described was based on "grandmother cell" se-

quence recognizers to simplify the understanding of concen-
trating information in time and time-dependent energy sur-
faces. More distributed representations of the individual se-
quences could have been used, and such representations
may be relevant to biology and circuit design.
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