ONLINE SUPPLEMENT

Title: "Osteopontin reduced hypoxia-ischemia neonatal brain injury by suppression of apoptosis in a rat pup model"

Supplemental Methods

Brain Atrophy

Pups were euthanized and the brains were removed at 7 weeks post HI, after the Morris water maze test was done. The ipsilateral and contralateral hemisphere were separated by a midline incision and then weighed on a high precision balance (sensitivity \pm 0.001g). Brain atrophy was expressed as the mass ratio of the ipsilateral hemisphere compared to the contralateral hemisphere.

Supplemental Figures

Supplemental Figure S1. Brain atrophy at 7 weeks post HI. There was a significant tissue loss in the ipsilateral hemisphere in HI+PBS and HI+OPN-0.1 group (${}^{#}P < 0.05$ vs. sham and sham+OPN-0.1). Brain atrophy in ipsilateral hemisphere was not attenuated after OPN treatment (ns = no significance). The data was expressed as the ratio of ipsilateral and contralateral hemisphere tissue mass. N = 18 animals for sham+OPN-0.1 group. N = 24 animals for HI+PBS group. N = 18 animals for HI+OPN-0.1 group. Vertical bars indicate SEM.

Supplemental Figure S2. OPN treatment didn't change the level of 32 kD pro-caspase-3 and 29 kD caspase-3 at 24 h post HI. (A) The level of pro-caspase-3 (32 kD) was not significantly different between all the groups (ns = no significance). (B) The level of 29 kD caspase-3 was significantly increased after HI injury (${}^{\#}P < 0.05$ vs. sham and sham+OPN-0.1). OPN treatment didn't significantly change the level of 29 kD caspase-3 expression compared with the HI+PBS group.