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Supplementary Figure 1: Validation of MacroH2A1 specific chromatin
Immunoprecipitation.

A: Chromatin immunoprecipitation on mouse embryonic fibroblasts (MEFs) chromatin
using anti-macroH2A1 and anti-acetylated H3 (as a marker for active chromatin). Input
and bound fractions were analyzed by semi-quantaitive PCR. MacroH2A1 is enriched
in non-expressed tissue-specific genes compared to house keeping genes while
Acetylated-H3 shows the inverse pattern.

B: MacroH2A1 bound and input signals shown in A were quantified using Image
Gauge software. The values of bound / input are shown for each gene and the average
value for TS — tissue specific genes and HK — house keeping genes.

C: Chromatin immunoprecipitation on mouse ES cells (mES) using anti-macroH2A1
antibody. The absence of signal from the bound fraction of macroH2A1 deficient cells

(KO) confirms the specificity of the antibody and ChIP procedure.
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Supplementary Figure 2: reactivation of GFP reporter from the inactive X
following mH2A1 KD.

A: Mouse fibroblasts with non-random x-inactivation and a silenced GFP repor”ter on
their inactive X (1) were infected with mH2A1 shRNA or scrambled sequence shRNA.
The effect of macroH2A1 knockdown and 5-aza-dC (300nM) for 3 days on expression
of GFP was analyzed using FACS. In agreement with Hernandez-Munoz et al.(2),
following DNA demethylation, higher degree of reactivation was observed in
macroH2A1 deficient cells compared to controls. Plots show percent of GFP positive
cells of all live cells.

B: Similar results as A were observed in 4 additional repeated experiments and the

average (+/- SD) fold increase in GFP positive cells is shown in the graph.
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Supplementary Figure 3: Dose dependant DNA demethylation of CpG island of

silenced TSGs after 5-aza-dC treatment.

RKO cells were treated with increasing concentrations of 5-aza-dC for 6 days (DNA

was collected from RKO samples presented in figure 5). DNA treated with Sodium

bisulfite (Zymo Research), PCR amplified with locus specific bisulfite universal

primers, cloned into T-vector (Promega) and sequenced.



Supplementary data & figures Barzily-Rokni et al.

A RKO
SC mH2A2 KD
mH2A2
B-Actin
B .
EMLH1
o 4] ] Op16
o0 BTIMP3
c
© 3]
<
(8]
T 2
Ie) 1
L
14
0
KD: mH2A1+2 SC mH2A1 mH2A2  mH2A1+2

5-aza-dC: 0OnM 200nM 200nM 200nM 200nM

Supplementary Figure 4: KD of macroH2A2 in RKO cells does not promote
further reactivation of silenced genes.

A: Western blot showing levels of macroH2A2 in RKO cells infected with Lentiviral
macroH2A?2 specific ShARNA or scrambled shRNA.

B: Real-time RT-PCR analysis of MLH1, p16 and TIMP3 expression in RKO cells with
macroH2A1 and/or macroH2A2 knockdown following treatment with 5-aza-dC. Graph
shows fold change in expression level relative to control (scrambled KD) treated with

200nM 5-aza-dC.
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Supplementary Figure 5: reactivation of TSGs in cells subject to ChIP

RNA samples corresponding to samples analyzed by ChIP in figure 5 were analyzed for
reactivation of silenced genes. Real-time RT-PCR analysis of TIMP3, CRBP1 and pl16
expression in RKO transduced with scramble or macroH2A1 KD following increase
dosage of 5-aza-dC. Graph shows fold change in expression level relative to control

(scrambled KD) treated with 200nM 5-aza-dC.
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Supplementary Figure 6: Expression of APRT and CRYAA in samples subject to
ChIP: The APRT locus is transcriptionally active in all samples while the CRYAA
locus is repressed. Genomic DNA was used as positive control for CRYAA PCR
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Supplementary Figure 7: MacroH2A1 ChIP results from Figure 1 presented as % of

input (without normalization to the positive control CRYAA)
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Supplementary Figure 8: MacroH2A 1 ChIP results from Figure 2 presented as % of

input (without normalization to the positive control CRYAA)
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Supplementary Figure 9: ChIP results from Figure 1 presented as % of input (without
normalization to the positive control: CRYAA for macroH2A1 and APRT for H2A.Z)
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Supplementary methods:

Bioinformatic analysis: MacroH2A1 chip-chip data from IMR90 lung fibroblasts
(GEO accession GSE18633) was correlated with data on aberrant methylation in WI-38
lung fibroblasts obtained on Illumina Humanmethylation27 bead arrays. Aberrant
methylation was defined as low methylation value (beta<0.25) in primary WI-38 cells
and high methylation value (beta>0.7) in late passage cells.

For each probe on the Illumina array, a MacroH2A1 enrichment score was assigned by
averaging the macroH2A1 values of all the Chip probes located within the region (-
300bp to +300 bp) relative to Illumina probe.

For figure 6A we restricted the analysis to 18,976 sites located within CpG islands (and
excluding probes from Chromosome X, since WI-38 cells are female). Sites were
grouped into 25 equal size groups according to macroH2A 1 enrichment value, from the
least enriched sites (group 1) to the most enriched (group 25). For each group we
determined the number of de-novo DNA methylation events in late passage WI-38 cells
compared to primary WI-38.

Genomewide Chip-Seq data on H3K27me3 in human lung fibroblasts generated as part
of the Broad Institute Epigenomics initiative was downloaded from UCSC genome
browser http://genome.ucsc.edu/cgi-

bin/hgTrackUi?hegsid=169874931&c=chr21&g=wgEncodeBroadChipSeq

H3K27me3 levels at CpG sites analyzed on [llumina array (Repersenting a genomic
region of 300bp was extracted.

For figure 6B 18,976 (as above) were grouped into 36 groups according to macroH2A 1
and K3K27 enrichment values, from the least enriched sites (group 1) to the most
enriched (group 6) in each dimention. For each group we determined the percentage of
de-novo DNA methylation events in late passage WI-38 cells compared to primary WI-
38.
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Table 1: primers used in this work

Barzily-Rokni et al.

Position
relative to

Primer name Forward Reverse TSS Ref.
APRT ChIP GCCTTGACTCGCACTTTTGT TAGGCGCCATCGATTTTAAG -117 -201 3)
APRT RT ACTCTGTGGGCCTCCTATTCC TTCTGAATCTCCAGCTCAGCCT
CDKN2A ChIP5 AGCACTCGCTCACAGCGTC CTGTCCCTCAAATCCTCTGGAG +8 +75 4
CDKN2A RT CCAACGCACCGAATAGTTACG CGCTGCCCATCATCATGAC
CDKN2A SNaPshot (F+R) TGGCTGGTCACCAGAGGGTG GACCGTAACTATTCGGTGCG 5)
CDKN2A SNaPshot CCTCCTCTACCCGACCCC
CDKN2A_MSP TTATTAGAGGGTGGGGCGGATCGC GACCCCGAACCGCGACCGTAA (6)
CDKN2A_ UMSP TTATTAGAGGGTGGGGTGGATTGT CAACCCCAAACCACAACCATAA (6)
CRBP1 ChIP CGTTTGAAGGAAATCCCCAG GACGTTCAGTTCGTTTCCCC -166 -265

AATAATGTGTAATTTTGTTTTTAGAAT -120 -777
CDKN2A Bis ATTGAG AAACTAAACTCCTCCCCACCTA @)
CRBP1 RT TTGTGGCCAAACTGGCTCCA ACACTGGAGCTTGTCTCCGT ®)
CRBP1 RT-real time CAGGCATAGATGACCGCAAGT TGTCTCCGTCCCAGCTCACT
a-Crystallin ChIP & RT CCGTGGTACCAAAGCTGA AGCCGGCTGGGGTAGAAG +49 +133 3
GAPdH RT ATCAAGAAGGTGGTGAAGCAG CTTACTCCTTGGAGGCCATGT
GATA4 ChIP CCTGGACTTTGCCTGCTG ACTGGCCTGTGGGAGTCAC -55-172
HOXAS9 ChIP CTCAGGAGCCTCGTGTCTTT GTGACCAGGTGGAGGTGTGT +64 +145
MLH1 ChIP CACTGAGGTGATTGGCTGAA GCCAGAAGAGCCAAGGAAAC -10 +53
MLHI1 RT AGCCTCTGAGCAAACCCCTGTC CCATCTTCCTCTGTCCAGCCAC
MLH1_RT real time ACAGCTGATGGAAAGTGTGCAT ATTGCCAGCACATGGTTTAGG
MLHI1 Bis TTTTTTTAGGAGTGAAGGAGGTTA CCCAAAAAAAACAAAATAAAAATC | -285-559
TIMP3 ChIP (CpG Island) CTTTTTGGAGGGCCGATGA CCCCCTCAGACCAATGGC +765 +815
TIMP3 ChIP (TSS) AGTTTTGGATCAGCTCACCCC ACAGAGCTCCACCCTTCAGC -105 -155
TIMP3 RT GCTGTGCAACTTCGTGGAGAGG CTCGGTACCAGCTGCAGTAGCC ©)]
TIMP3_RT real time CTTCTGCAACTCCGACATCGT AGCTTCTTCCCCACCACCTT
TIMP3 Bis TGGTTTGGGTTAGAGATATTTAGTG AAACTCCAACTACCCAAAAACAC +542 +1232
MGMT ChIP GCGCTTTCAGGACCACTC GTGCCTTAGTTTGCCAAATG -428 -329
MGMT RT ATGGACAAGGATTGTGAAATG GAAAACGGGATGGTGAAGAGC
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