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Web Appendix A. A Pseudo Prior Model

From Lvi0 with censored observations the two values taken by ωvi lead to two models of

different dimensions. If ωvi = 0, we have a model with Tvi being a random parameter. In

contrast, Tvi is fixed at Tvi = tc if ωvi = 1. Such a change in dimension complicates posterior

simulation (Green, 1995). We use the pseudo prior approach by Carlin and Chib (1995) to

avoid this complication. In other words, we augment the smaller probability model under

ωvi = 1 by defining a prior probability model for a hypothetical Tvi (but keep tc in the

regression for yvi). The new variable Tvi has no meaningful interpretation under ωvi = 1. It

is only introduced to match the model dimensions. The augmented likelihood factor under

the new model is

L∗
vi0 = {[yvi | tc,Ψ] pvπvi(Tvi)}ωvi · {[yvi | Tvi,Ψ](1− pv)gv(Tvi)I(Tvi > tvi)}1−ωvi . (1)

Here πvi(Tvi) is a pseudo prior for Tvi when ωvi = 1. It is a conveniently chosen linking density

such that the two models implied by ωvi = 0/1 have the same dimension. The equivalence

between L∗
vi0 and Lvi0 is obvious when ωvi = 0. When ωvi = 1, the equivalence can be verified

by integrating (1) with regard to Tvi. As the name “pseudo prior” suggests, πvi(Tvi) has no
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effect on model inference. However, a poor choices of the linking density may lead to poor

mixing of the posterior Markov chain Monte Carlo simulation. In our implementation we

follow the recommendation of Carlin and Chib (1995) and base the specification of pseudo

priors πvi(Tvi) on a preliminary data analysis. First we fit a model without cure where ωvi = 0

for all subjects. Under this model there is no dimensional change. Then πvi(Tvi) is specified

to mimic the marginal posterior density of Tvi under the simplified model. Specifically, we

assume πvi(Tvi) to be normal and match the first two moments. Finally, under the pseudo

priors approach the marginal posterior distribution of Tvi is meaningless. Only the posterior

conditional density of Tvi given ωvi = 0 is of interest.

Web Appendix B. The Polya Tree Prior

For reference, we give a brief review of PT models. More details can be found in Lavine (1992,

1994) and Mauldin et al. (1992). Let ε = ε1 · · · εm ∈ Em denote a binary sequence of length m.

For example, E1 = {0, 1} and E2 = {00, 01, 10, 11}. The definition of the PT prior requires

two parameters, a nested sequence of partitions Π = {B0, B1, B00, B01, . . . , Bε0, Bε1, . . .} of

the sample space S,

S = B0 ∪B1, B0 = B00 ∪B01, B1 = B10 ∪B11, . . . , Bε = Bε0 ∪Bε1, . . . ,

and parameters A = {α0, α1, α00, α01, . . . , αε0, αε1, . . .} that define a sequence of random

variables Yε0 ∼ Be(αε0, αε1) and Yε1 = 1 − Yε0, independently across ε. We say that a

random probability measure G has a PT prior, G ∼ PT (Π,A), if the random probability

G(Bε0 | Bε) is defined by G(Bε0 | Bε) ≡ Yε0. This implies G(Bε1,··· ,εm) =
∏m

j=1 Yε1,··· ,εj
. We

can center G around a given distribution G̃, i.e., E(G(B)) = G̃(B), by setting αε0 = αε1 and

taking the partition Π at level m to coincide with quantiles G̃−1(k/2m), k = 0, 1, · · · , 2m.

That is, for any ε ∈ Em,

Bε = (G̃−1(k/2m), G̃−1((k + 1)/2m)) (2)
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for some k in {0, 1, · · · , 2m − 1}.

The family A determines how much G varies around G̃. It has a similar role as the

precision parameter in a Dirichlet process prior. Berger and Guglielmi (2001) considered a

family of the form αε1,··· ,εm = c · ρ(m), where ρ(m) = m2, m3, 2m, 4m or 8m, and c > 0 is a

constant. In general, any ρ(m) such that
∑∞

m=1 ρ(m)−1 < ∞ guarantees G to be absolutely

continuous. For example, ρ(m) = m1+η or ρ(m) = (1 + η)m for η > 0 satisfies the above

condition.

A technically convenient property of PT priors is the conjugacy under random sampling.

Let nε(T ) be the number of elements of T contained in Bε. The posterior distribution of G

given T is again a PT, G | T ∼ PT (Π,A′), where A′ = {α′
ε} with α′

ε = αε + nε(T ).

Another useful property is the following closed form expression for the predictive density

function of (Tn | T1, · · · , Tn−1), marginalized with respect to G. Let T(−i) = {Tj : j 6= i},

let ε(j, Ti) denote the index ε1 · · · εj ∈ Ej such that Ti ∈ Bε1···εj
, and let g̃(·) be the density

function of G̃. Assume that the partition Π is specified as in (2), and A is specified such that

for every ε ∈ Em, αε = c ·m2. Define Mi to be the smallest integer such that nε(Mi,Ti)(T(−i)) =

0. The marginal predictive distribution can be computed exactly:

[Tn | T1, · · · , Tn−1] =

{
Mn∏
j=1

cj2 + nε(j,Tn)(T(−n))

2cj2 + nε(j−1,Tn)(T(−n))

}
2Mi g̃(Tn). (3)

See, for example, Hanson and Johnson (2002).

The conditional cumulative probability marginalized with respect to G, [Tn < t | T1, · · · , Tn−1]

can also be evaluated exactly. We introduce the following notation. Let M∗
i be the smallest

integer such that nε(M∗
i ,t)(T(−i)) = 0. Let Di(t) = {ε : ε ∈ EM∗

i and Bε < t} be the set

of indices for partitions defined at level M∗
i and on the left of t. Here Bε < t indicates

that the upper bound of Bε is smaller than t. For a partition Bε, ε ∈ Di(t), we define

ε∗(j, Bε), j = 1, · · · , M∗
i , to be the sequence of indices such that Bε∗(1,Bε) ⊇ Bε∗(2,Bε) ⊇ · · · ⊇

Bε∗(M∗
i ,Bε) = Bε. We further define Bi(t) = Bε(M∗

i ,t)∩(−∞, t). Then the marginal cumulative
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distribution function is

[Tn < t | T1, · · · , Tn−1] =
∑

ε∈Dn(t)

E(G(Bε)) + E(G(Bi(t)))

=
∑

ε∈Dn(t)

M∗
n∏

j=1

cj2 + nε∗(j,Bε)(T(−n))

2cj2 + nε∗(j−1,Bε)(T(−n))

+

M∗
n∏

j=1

cj2 + nε(j,t)(T(−n))

2cj2 + nε(j−1,t)(T(−n))
2M∗

i G̃(Bi(t)). (4)

The term
∑

ε∈Dn(t) E(G(Bε)) can be computed more efficiently when combining Bε, ε ∈ Di(t),

into partitions defined at higher levels of the Pólya tree. The marginalized conditional

survival probability, [Tn > t | T1, · · · , Tn−1], can be computed in the same fashion. Expression

(4) is useful in the computation of CPO.

Web Appendix C. Posterior Sampling Scheme

Posterior MCMC simulation is built on sampling from the following conditional posterior

distributions and other transition probabilities.

The simulation of the full conditional posterior distribution of Ψ depends on the prior

model assumed. Different sampling strategies have been discussed by Gelman et al. (2003).

Under the pseudo priors setup, simulation of ω0
v is straightforward. The full conditional

posterior distribution of an unknown ωvi is a Bernoulli(p∗vi) with

p∗vi =
[yvi | tc,Ψ]pvπvi(Tvi)

[yvi | tc,Ψ]pvπvi(Tvi) + [yvi | Tvi,Ψ](1− pv)[Tvi | T s
v(−i)]

.

Here T s
v(−i) denotes the set of observed and unobserved TTP in the susceptible group except

Tvi. For censored subjects (dvi = 0), Tvi needs to be simulated. Given that ωvi = 1, we

simulate Tvi from the pseudo prior, i.e., Tvi ∼ πvi(Tvi). Given that ωvi = 0, we simulate Tvi by

Acceptance-Rejection sampling (Robert and Casella, 2003). The full conditional distribution

of Tvi is proportional to [yvi | Tvi,Ψ]I(Tvi > tvi)[Tvi | T s
v(−i)]. Because [yvi | Tvi,Ψ] is bounded
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and easy to evaluate, we can propose values based on [Tvi | T s
v(−i)]I(Tvi > tvi), and decide

whether to accept or reject the proposal based on [yvi | Tvi,Ψ]. The proposed values are

generated from [Tvi | T s
v(−i)] under the constraint that Tvi > tvi. The definition of [Tvi | T s

v(−i)]

is given in (3), which is the posterior predictive distribution under a PT prior. Lavine (1992)

describes how to generate random samples from the posterior predictive distribution.

The full conditional distribution of pv is proportional to

p
ap+

Pnv
i=1 ωvi−1

v (1− pv)
bp+

Pnv
i=1(1−ωvi)−1,

which is again a Beta distribution.

Web Appendix D. The Computation of CPO

The computation of CPO differs for censored and uncensored subjects. We assume that

dvi = 0 for i = 1, · · · , nv0, and dvi = 1 for i = nv0 + 1, · · · , nv. First we derive CPO for

uncensored cases, i.e., dvi = 1. Defining t1
v(−i) = t1

v/tvi and integrating with respect to Gv,

we have

CPOvi =

∫
[yvi | tvi,Ψ][tvi | t1

v(−i), T
0
v ](1− pv)[Ψ, T 0

v , pv | Y(−vi), t(−vi), d(−vi)]dΨdT 0
v dpv

=

∫
[yvi | tvi,Ψ][tvi | t1

v(−i), T
0
v ](1− pv)[Λ | Y(−vi), t(−vi), d(−vi)]dΛ. (5)

Note that when marginalized with regard to Gv, the likelihood contribution from sub-

ject (v, i) is [yvi | tvi,Ψ][tvi | t1
v(−i), T

0
v ](1 − pv). We have the second equation because

[Ψ, T 0
v , pv | Y(−vi), t(−vi), d(−vi)] is the marginal distribution of (Ψ, T 0

v , pv) obtained from

[Λ | Y(−vi), t(−vi), d(−vi)]. Using the fact that

[Λ | Y , t, d] ∝ [yvi | tvi,Ψ][tvi | t1
v(−i), T

0
v ](1− pv)[Λ | Y(−vi), t(−vi), d(−vi)],

we can evaluate (5) through an importance sampling scheme. The full posterior distribution,

[Λ | Y , t, d], serves as the importance sampling density, and the reciprocal of the likelihood
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contribution from (v, i) serves as the importance sampling weight. Specifically, we estimate

CPOvi by

CPOvi ≈

{
1

K

K∑
k=1

1

[yvi | tvi,Ψ(k)][tvi | t1
v(−i), T

0(k)
v ](1− p

(k)
v )

}−1

,

where (Ψ(k), T
0(k)
v , p

(k)
v ) is the kth sample from the full posterior distribution, [Λ | Y , t, d],

given all observations.

For censored cases, i.e., dvi = 0, the computation of CPO is more complicated. Integrating

over Gv, the augmented likelihood factor is

[yvi | Tvi,Ψ]I(Tvi > tvi)[Tvi | ωvi, t
1
v, T

0
v(−i)][ωvi | pv],

where T 0
v(−i) = T 0

v /Tvi and [Tvi | ωvi, t
1
v, T

0
v(−i)] = {δ(tc)}ωvi [Tvi | t1

v, T
0
v(−i)]

1−ωvi . Thus

CPOvi =

∫
[yvi | Tvi,Ψ]I(Tvi > tvi)[Tvi | ωvi, t

1
v, T

0
v(−i)][ωvi | pv]

· [Ψ, T 0
v(−i), pv | Y(−vi), t(−vi), d(−vi)]dΨdT 0

v dωvidpv.

Note that [Ψ, T 0
v(−i), pv | Y(−vi), t(−vi), d(−vi)] is obtained from [Λ(−vi) | Y(−vi), t(−vi), d(−vi)] by

marginalizing over parameters other than (Ψ, T 0
v(−i), pv). Here Λ(−vi) is the set of model pa-

rameters based on (Y(−vi), t(−vi), d(−vi)), and [Λ(−vi) | Y(−vi), t(−vi), d(−vi)] is the full posterior

distribution as defined by Expression (2) in Zhang et al. (2008). Define

P (T > tvi | T 0
v(−i), pv) =

∫
I(Tvi > tvi)[Tvi | ωvi, t

1
v, T

0
v(−i)][ωvi | pv]dωvidTvi

=

∫
I(Tvi > tvi){pvδ(tc) + (1− pv)[Tvi | t1

v, T
0
v(−i)]}dTvi

= pv + (1− pv)[T > tvi | t1
v, T

0
v(−i)],

where [T > tvi | t1
v, T

0
v(−i)] is the conditional survival probability of Tvi marginalized with

respect to Gv, as is discussed in (4). We then define f(Λ) as the product of two density

functions

f(Λ) =

{
I(Tvi > tvi)[Tvi | ωvi, t

1
v, T

0
v(−i)][ωvi | pv]

P (T > tvi | T 0
v(−i), pv)

}
· [Λ(−vi) | Y(−vi), t(−vi), d(−vi)].
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Thus we have

CPOvi =

∫
[yvi | Tvi,Ψ]P (T > tvi | T 0

v(−i), pv)f(Λ)dΛ.

Since [Λ | Y , t, d] ∝ [yvi | Tvi,Ψ]P (T > tvi | T 0
v(−i), pv)f(Λ), an importance sampling scheme

can be employed to evaluate CPO, with [Λ | Y , t, d] being the importance sampling density

and {[yvi | Tvi,Ψ]P (T > tvi | T 0
v(−i), pv)}−1 being the importance sampling weight, i.e.,

CPOvi ≈

{
1

K

K∑
k=1

1

[yvi | T (k)
vi ,Ψ(k)]P (T > tvi | T 0(k)

v(−i), p
(k)
v )

}−1

. (6)

Here (Ψ(k), T
(k)
vi , T

0(k)
v(−i), p

(k)
v ) are the kth sample from the full posterior distribution [Λ |

Y , t, d].

Web Appendix E. Plots

• Figure 1 plots the observed and fitted PSA profiles for four randomly selected patients.

• Figure 2 validates the survival and cure aspects of the proposed model based on subject

specific martingale residuals (Barlow and Prentice, 1988; Therneau et al., 1990; Lin

et al., 2002), which is defined by evi = dvi−Hvi. Here Hvi is the individual cumulative

hazard up to tvi. The residuals can be interpreted as the difference over [0, tvi] in the

observed number of events and the expected number given the model. In general,

the residuals are scattered horizontally over age (with three outliers), suggest that the

proposed model is sufficient.

• Figure 3 shows the posterior variability of Gv by plotting ten random samples from its

posterior distribution.

• Figure 4 shows the intial drop and duration induced by the AA/CH treatments. A

larger value of ηv suggests a deeper initial drop in PSA level. On the other hand, the
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larger the value of φ1v, the sooner the treatment effect wears out. We plot lv(t) =

ηv[exp(−phi1vt)− 1] in Figure 4.
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Figure 1: The observed longitudinal profiles and fitted values of 4 randomly selected patients.

The vertical axis indicates log(PSA+1), and the horizontal axis is age in years. Each point

denotes a PSA measurement. The dotted lines plot fitted values of the longitudinal profiles.

The vertical line marks the initiation of the AA/CH therapy.
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Figure 2: The martingale residual for the survival model versus age. In general, the residuals

are scattered horizontally over age.
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Figure 3: Ten random samples from [Gv | Y , t, d]. The horizontal axis indicates years after

treatment.
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Figure 4: The initial slope and duration of treatment effect modeled by ηv and φ1v. Here t

is the time in years from the start of treatment v and lv(t) = ηv{[exp(−φ1vt)− 1]}.
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