Supplementary Figure 1

с. с.	e b	xnd-1 xnd-1	MSSEPIVANLDNSMTTEPAPAAFPPISPMSFAFMNEEERAAVKFP MNDLAKNCLLKHSQTTDSAPPISPLSFAFMTDEEKAAFKFPASE
С.	r	xnd-1	MNDIMNNCNPNFRSEEPRRQLTLNGVSWPVRTTEETISAPPISPLSFAFMS <mark>E</mark> EE <mark>R</mark> TALNFPGRH
C.	е	xnd-1	KVDPKPQTAKDDEPSTSQ <mark>KTLSVDDLLIVDDDDE</mark> TDSPPASSSNYE
С.	b	xnd-1	LAEGDTKKDEEQMSPNKNDSNSHSSPSTSPSDSSSRPRKTFKVDDLLIVDDDDEPFSSPDGYE
С.	r	xnd-1	FQPEINRPRNISKSASFTPEPSLDSTPPYNRKTFKIDDLLVVDDD <mark>ED</mark> DDDSPPSANSFE
С.	е	xnd-1	PKAHIGWASFGDSCLPPPPKPVKKATDPNLPRRKVYVIRSQNTDKSKSPLVVNNQQVT
С.	b	xnd-1	PTAHLGWASFGESIRPPPPTTPPPPPVLSKVVSAPVPLKRKVYVIHQANRAKTKPYDASNHVSAA
С.	r	xnd-1	PKAHLGWASFDTSDHVVTH
С.	е	xnd-1	LEKAQNSPKNPNPVVSKPIVLTDSDEDVDVVGFDEEEEAIKIMADPTR-PPDLPPQRSLISR
С.	b	xnd-1	TKRVSGSPVSPTSKLAKKDVADVVSSDSDADVDVVGLDEEESTLLLDVSDSANPPDLPPQSSLGSR
С.	r	xnd-1	NDNMPGPPKEDSPPITTINDISDSDADVDVVGIDEDNS-ISIEANEDGNPPDLPPQSSIGSR V
с.	е	xnd-1	FESN <mark>R</mark> TK <mark>R</mark> DIFRNSYDS <mark>DEEE</mark> FLRSRYQRAVTPPPILERQSGSTRESVSEPSEGKILEEDATLGSE
C.	b	xnd-1	FG-L <mark>K</mark> SK <mark>R</mark> DNRRG-YDS <mark>EDDD</mark> PSSLRYANNFTPPPRLEPQTTENQNRDLPKKIDED
С.	r	xnd-1	FS-Y <mark>K</mark> SK <mark>K</mark> ARYRYDS <mark>EEEE</mark> MINARFLSNISPPPLLEAQATSGSISSAKDNAGADEEKKCEDG
с.	е	xnd-1	HTERVGKRIELEEINPSQLL <mark>R</mark> TKISASAIPILPLSKSIMERKKVALEMT <mark>K</mark> NAVI <mark>R</mark> QANNFRPKAKN
С.	b	xnd-1	SVELRSSLDAPQSL <mark>K</mark> SNKPGPVLPLSKSIMEQKKVALGMT <mark>R</mark> NAVI <mark>K</mark> KVDSSKSTTKN
С.	r	xnd-1	QIEQRLGLEELNSAQIL <mark>K</mark> TKVSSSTIPVLPLSKSIMERKKVALEMT <mark>R</mark> HAVI <mark>K</mark> KYNSPSFKN ◆
с.	е	xnd-1	STVAP <mark>K</mark> SVQIPAYNHKTPMTFYSNMAAPAFVKGVNGRCYRCA <mark>E</mark> IQKPVDMSSF <mark>R</mark> FVDDSTVIAI
С.	b	xnd-1	FTCAP <mark>R</mark> SVQIPAYTDKAPMTLYSNVNKPG-AFHKDARGRCVRCR <mark>D</mark> -RSPVDMSSF <mark>K</mark> FVDDSTVISV
С.	r	xnd-1	FTVAP <mark>K</mark> SVQIPAYNDNTPMTLYSNINKPLNSISKDVRGRCVRCR <mark>D</mark> -RSPVDMSTF <mark>K</mark> FIDDTTVVSV ↓
с.	е	xnd-1	RALLODQTRVMVARTAIWNREYAK <mark>R</mark> LGDRAAGTVWQKPDEVSAQMTGF O SATVRR <mark>O</mark> IEIANMSIIP
C.	b	xnd-1	RA <mark>LL</mark> OQTRVMIARTAVWNREYSK <mark>K</mark> LGDRATGTVWQKPDEVTAQMTGF <mark>C</mark> SATVRR <mark>C</mark> IEIANLSIVP
С.	r	xnd-1	RALLOOTRVMIARTAMWNREYSKRLGDRAAGTVWQRPDEVTAQMTGFSATVRRCIEIANLSIIP
с.	е	xnd-1	KCADRVGVSRNELTSLKSSFGSEKFCGQTMRAPHVLTQFYSVNQASMARNREGSDGPSSSAARPVG
С.	b	xnd-1	RCADRIGVSKNELASLKSAFENEKFFGQTMRTPHVLTHYYSAKSQNSAN-KGTTNAHGPPLLPRIG
С.	r	xnd-1	RCADRIGVSKNELVSLKSTFGTEKFLGQTMRTPHVLTHYYAQKSQSIAGSRRPSSSNVTPPIPRMG
с.	е	xnd-1	RPPTTQPVETAVEKKKNDEDEKRHHPLTNFTTASTSSQNLQD-QPPPKNTVLRW
C.	b	xnd-1	RPPAQKVD-EEEEKRHHPLTNYLPSTSLQSTSQETSTSPTDITVPPLKKGVLRW
С.	r	xnd-1	NPPVETEKN <mark>EDEDR</mark> RHHPLTYYQPSSSFPSSTSFQSSSP <mark>S</mark> VSPPESLVPPLKKTVLRW
с.	е	xnd-1	SNITTPRILRPPTLKTPYSLPRTAVIPVMKKKQPEIEQVQPKKDTTA
С.	b	xnd-1	TSIQNPRILRTAHAPYPLPRMAVIPVLKKKDVATTSETASTSSGPLTYVPPKK <mark>E</mark> TKKDQAAAPT
С.	r	xnd-1	TSIQTPRILRPPNPSYVVPKMAVIPVMKKVDSTPPKKEEEIVM
C.	е	xnd-1	SLV <mark>RKRGRP<mark>R</mark>KE<mark>K</mark>PL<mark>E</mark>VQ-SPRKGLYLRF<mark>K</mark>SCTKYIVRTPIDKSVQETVNYLLDEVDKRA<mark>S</mark>TSAT</mark>
С.	b	xnd-1	TGPRKRGRP <mark>K</mark> KV <mark>K</mark> PA <mark>D</mark> GIPSRSTEMTL <mark>R</mark> SRKKEIPIDQVVQGLVQSLISRISGEASG
C.	r	xnd-1	TGPRKRGRP <mark>R</mark> KI <mark>R</mark> PS <mark>E</mark> LTVRPIQPSTRRL <mark>R</mark> SYKKELCEIDEDVVDVVEGLVSKVSGTF <mark>S</mark> INTS

Supplementary Figure 1. XND-1 protein sequences from C.elegans, C. briggsae, and C. remaneii are compared. Identical amino acids between the three proteins are red, and conserved charge amino acids The out-of-frame ok709 allele begins at are highlighted in yellow. the open arrowhead; ok709 encodes an additional 64 amino acids followed by a termination codon. The diamond indicates the amino acid at which the out-of-frame ok708 deletion begins; ok708 encodes an additional 20 amino acids followed by a termination codon. The line above the sequences indicates the amino acids that are absent in alternatively spliced transcripts of the *xnd-1* gene. The amino acids between the arrows contain a potential metal-binding (relevant amino acids shaded in blue) domain that may mediate chromatin-binding and/or protein-protein interactions (personal communication, E. Koonin).

Supplementary Figure 2. HTZ-1 staining is unaffected in *xnd-1* mutant germline nuclei. *wt* (top), *xnd-1* (bottom) germlines co-stained with anti-HTZ-1 antibodies (magenta) and DAPI (green). In both *wt* and *xnd-1*, HTZ-1 appears excluded from one chromosome (the X) as it is preferentially localized to the autosomes.

Supplementary Figure 3. The SC disassembles on X chromosomes that do not receive a DSB in *xnd-1* mutants. (a) Quantification of pairing and (b) synapsis during pachytene in wild type and *xnd-1* (pairing and synapsis were quantified simultaneously: regions 1-4, *wt*, N=220, 236, 210, 159 nuclei; *xnd-1*, N=356, 314, 322, 245 nuclei). The X chromosome desynapses in ~50% of *xnd-1* late pachytene nuclei. (c) Images of early pachytene and late pachytene nuclei in *wild type* (top) and *xnd-1* (bottom) reveal the loss of the SC on the X. DAPI (green), FISH probes to the 5S locus on Chromosome V (yellow) and the right end of the X chromosome (cyan, yellow arrows) and anti-SYP-1 antibody (magenta). (d, e) Desynapsis is rescued by ionizing radiation (IR) which provides exogenous DSBs. (d) Unirradiated *xnd-1* and irradiated *xnd-1* germlines stained for DNA (green) and anti-SYP-1 antibodies (magenta) demonstrate that the desynapsis defect in *xnd-1* is rescued by exogenous break formation. Yellow arrowheads mark the X chromosome in the unirradiated animals 16 hrs post-IR (*wt -/+* IR, N= 150, 166; *xnd-1 -/+* IR, N= 95, 511).

Supplementary Figure 4. XND-1 antibodies are specific. anti-XND-1 antibodies do not stain *xnd-1* mutant germlines. *xnd-1* mutant germlines were dissected and co-stained with anti-XND-1 antibodies (left panel, magenta) and anti-RAD-51 antibodies (right panel, white; DAPI, blue).

Supplementary Figure 5. XND-1 is enriched on autosomes in *wild type* males. Germlines from *wild type* males were dissected and stained with DAPI (green) and anti-XND-1 antibodies (magenta). As in *wild type* hermaphrodites, XND-1 is preferentially localized to the autosomes (inset).

Supplementary Figure 6. *mys-1* treated animals have decreased levels of H2AK5Ac. *GFP(RNAi)* or *mys-1(RNAi)* treated *xnd-1* mutant gonads were dissected, fixed, and stained on the same slides and imaged with identical settings on a Nikon A1 confocal microscope. The 1:2500 dilution of the anti-H2AK5Ac was used in these experiments so that small perturbations in signal could be seen. Anti-Htp-3 immunolocalization shows that the *mys-1(RNAi)* treated samples are not impervious to antibody and that the diffuse red signal with the anti-H2AK5Ac antibody corresponds to background staining.

Supplementary Figure 7. Sterile *xnd-1* mutant germlines display meiotic packaging defects. Dissected *xnd-1* germlines were stained with anti-SYP-1 antibody (magenta) and DAPI (green). As shown by the white circles, meiotic progression is aberrant with defects in the temporal and spatial organization of late meiotic events.

Interval (Mb)		0.17 -1.91	1.91-4.59	4.59-10.72	10.72-12.05	12.05-14.68	N
oocytes	wt	8.9 (21)	10.6 (25)	0.0 (0)	5.5 (13)	26.3 (62)	236
	xnd-1	6.5 (15)	16.9 (39)	21.2** (49)	2.2 (5)	1.3** (3)	231

Supplementary Table 1. Crossover distribution on chromosome I from oocytes

Values are map units for each interval (number of COs per interval)

The change in crossover distribution between N2 and xnd-1 is statistically significant:

 $\chi^{2}(5,N=111)=24,000, p<.001$

*[,] **Significant difference in map size of the interval between *wild type* and *xnd-1* (*p<0.05; **p<0.001)

Supplementary Table 2. Crossover distribution on the X chromosome

Interval	(Mb)	0.06 - 2.34	2.34 - 4.13	4.13 - 6.88	6.88 - 10.64	10.64 - 14.26	14.26 - 17.22	N
oocytes	wt ¹	7.3 (27)	9.5 (35)	6.5 (24)	7.6 (28)	9.8 (36)	10.3 (38)	
	xnd-1	1.5* (6)	2.5* (10)	4.5 (18)	8.7** (35)	6.5 (26)	1.7** (7)	402

Values are map units for each interval (number of COs per interval)

The change in crossover distribution between N2 and xnd-1 is statistically significant:

χ²(6,N=102)=50.2, *p*<.001

¹Data from Lim et al.¹

**Significant difference in map size of the interval between wild type and xnd-1 (*p<0.05;
**p<0.001)

Supplementary Table 3. Crossover distribution on chromosome I from sp

Interval	(Mb)	0.17 -1.91	1.91-4.59	4.59-10.72	10.72-12.05	12.05-14.68	N
sperm	wt	14.0 (46)	12.8 (42)	6.1 (20)	4.3 (14)	13.4 (44)	328
•	xnd-1	5.7** (20)	17.5* (61)	22.6** (79)	0.9* (3)	3.4** (12)	349

Values are map units for each interval (number of COs per interval)

The change in crossover distribution between N2 and xnd-1 is statistically significant: χ^2 (5, N=166)=207, p< .001

* **Significant difference in map size of the interval between *wild type* and *xnd-1* (*p<0.05; **p<0.001)

Supplementary Table 4. xnd-1 viability and	%	HIN
--	---	-----

Supplementary Table 4. <i>xnd-1</i> viability and % HIM							
genotype	#embryos	%hatched	%males				
N2	3347	99.9	0.06				
<i>ok708</i> M⁺Z⁻	2502	87.4	13.8				
<i>ok708</i> M ⁻ Z ⁻	3263	75.5	23.2				
<i>ok709</i> M⁺Z⁻	2132	69.4	12.3				
<i>ok709</i> M⁻Z⁻	2288	65.5	19.9				
+/+;sEx826	1502	ND	24.7				
rde-2;sEx826	2047	ND	0.49				

Supplementary Table 5. Number of RAD-51 foci in *wt* and *xnd-1* meiotic germline nuclei.

REGION:	ΤZ	1	2	3	4	5	6
N2#1							
0	86	6	1	1	38	44	21
1-2	30	53	9	24	16	5	1
3-4	0	23	51	30	7	0	0
5-7	0	1	17	16	4	0	0
N2#2							
0	33	2	0	0	2	29	20
1-2	8	27	6	6	11	4	0
3-4	0	8	31	23	9	0	0
5-7	0	0	10	14	13	0	0
N2#3							
0	43	7	0	0	0	34	0
1-2	8	26	26	12	11	3	0
3-4	0	1	29	25	21	0	0
5-7	0	0	1	12	4	0	0
xnd-1#1							
0	32	1	1	0	2	17	25
1-2	2	2	19	9	20	25	12
3-4	0	17	29	12	17	5	1
5-7	0	22	12	16	4	0	0
xnd-1#2							
0	34	0	0	0	2	10	8
1-2	14	15	0	16	12	8	1
3-4	0	8	7	11	7	0	0
5-7	0	5	14	2	0	0	0
xnd-1#3							
0	35	1	0	4	12	21	10
1-2	10	10	2	19	14	7	3
3-4	1	22	12	9	5	1	0
5-7	0	14	14	1	0	0	0
xnd-1#4							
0	37	1	0	3	7	22	17
1-2	16	0	1	29	30	16	1
3-4	7	36	19	34	6	3	0
5-7	2	47	46	22	1	1	0
xnd-1#5							
0	25	2	0	0	2	8	28
1-2	13	7	7	9	8	27	15
3-4	2	17	18	17	24	8	2
5-7	1	16	15	4	4	1	0

Su	nn	lementary	v Table 6.	XND-1	localization	in	meiotic	mutants.
Ju	μμ	iemental y			IOCAIIZATION		meione	mutanto.

Genotype	Function	XND-1	XND-1	Reference
		temporal	exclusion	
		staining	from X	
		pattern*	chromosome	
chk-2(me64)		wild type	yes	2
him-8(e1489, me4, tm611)		wild type	yes	3
prom-1(ok1140)		wild type	yes	4
sun-1(jf18)	pairing	wild type	yes	5
him-3(e1147, e1256)		wild type	yes	6
htp-1(gk150)		wild type	yes	7,8
rec-8(ok978)		wild type	yes	9
syp-1(me17)		wild type	yes	10
syp-2(ok307)	Axial	wild type	yes	11
	element/SC			
	formation			12
him-6(e1104, e1423)		wild type	yes	12
				13
him-14(it44)		wild type	yes	14
him-17(ok424)	DSB formation	wild type	yes	15
mre-11(ok179)	and break	wild type	yes	15
msh-2(ok2486)	repair	wild type	yes	10
msh-5(me23)	ropun	wild type	yes	17
rad-51(lg8701)		wild type	yes	18
spo-11(me44)		wild type	yes	19
dpy-28(y1)	Crossover	wild type	yes	20
	Control			
dpy-27(y56)	Dosage	wild type	yes	21
dpy-30(y228)	compensation	wild type	yes	22
him-1(e879)	Chromatin	wild type	yes	23
his-72(tm2066)	structure	wild type	yes	24
hpl-1(tm1621)		wild type	yes	25
hpl-2(tm1489)		wild type	yes	25
htz-1(tm2469)		wild type	yes	26
met-2(n4256)		wild type	yes	27
mrg-1(qa6200)		wild type	yes	28
rbr-2(ok2544)		wild type	yes	29
set-2(tm1630)		wild type	yes	30
him-5(e1467, ok1896)	Unknown	wild type	ves	23

*Nuclear staining pattern is consistent with particular substage of prophase I, rather than position in germline.

	<i>let-868.1::GFP</i> ³¹ expression
wild type	-
xnd-1	-
<i>mes-4</i> (RNAi)	++

Supplementary Table 7. xnd-1 mutants do not desilence transgene arrays.

Supplementary Movie 1. RAD-51 foci are detected on X chromosomes in wild type nuclei. 3D reconstructions of confocal stacks showing accumulation of RAD-51 foci (magenta) in wild type animals treated with *rad-54(RNAi)*. Autosomes are labeled with anti-HTZ-1 antibodies (cyan), all chromosomes are labeled with DAPI (green), therefore the X chromosome is revealed by the absence of colocalization.

Supplementary Movie 2. RAD-51 foci cannot be detected on a subset of X chromosomes in *xnd-1* nuclei. 3D reconstructions of confocal stacks showing accumulation of RAD-51 foci (magenta) in *xnd-1* mutant animals treated with *rad-54(RNAi)*. Autosomes are labeled with anti-HTZ-1 antibodies (cyan), all chromosomes are labeled with DAPI (green), therefore the X chromosome is revealed by the absence of colocalization. Yellow arrows indicate X chromosomes that do not have RAD-51 foci; blue arrows indicate X chromosomes with RAD-51 foci.

Supplementary Movie 3. XND-1 is enriched on autosomes. 3D reconstructions of confocal stacks from the mid-pachytene region of wild type animals labeled with anti-Histone H4K12Ac (magenta), anti-XND-1 antibody (cyan); and DAPI (green). Note the complete colocalization of the antibodies and the absence of staining on the X chromosome (yellow arrows).

Supplementary References

- ¹ Lim, J. G., Stine, R. R. & Yanowitz, J. L. Domain-specific regulation of recombination in Caenorhabditis elegans in response to temperature, age and sex. *Genetics* **180**, 715-726 (2008).
- ² MacQueen, A. J. & Villeneuve, A. M. Nuclear reorganization and homologous chromosome pairing during meiotic prophase require C. elegans chk-2. *Genes Dev* **15**, 1674-1687 (2001).
- ³ Phillips, C. M. *et al.* HIM-8 binds to the X chromosome pairing center and mediates chromosomespecific meiotic synapsis. *Cell* **123**, 1051-1063 (2005).
- ⁴ Jantsch, V. *et al.* Caenorhabditis elegans prom-1 is required for meiotic prophase progression and homologous chromosome pairing. *Mol Biol Cell* **18**, 4911-4920 (2007).
- ⁵ Penkner, A. *et al.* The nuclear envelope protein Matefin/SUN-1 is required for homologous pairing in C. elegans meiosis. *Dev Cell* **12**, 873-885 (2007).
- ⁶ Zetka, M. C., Kawasaki, I., Strome, S. & Muller, F. Synapsis and chiasma formation in Caenorhabditis elegans require HIM-3, a meiotic chromosome core component that functions in chromosome segregation. *Genes Dev* **13**, 2258-2270 (1999).
- ⁷ Couteau, F. & Zetka, M. HTP-1 coordinates synaptonemal complex assembly with homolog alignment during meiosis in C. elegans. *Genes Dev* **19**, 2744-2756 (2005).
- ⁸ Martinez-Perez, E. & Villeneuve, A. M. HTP-1-dependent constraints coordinate homolog pairing and synapsis and promote chiasma formation during C. elegans meiosis. *Genes Dev* **19**, 2727-2743 (2005).
- ⁹ Pasierbek, P. *et al.* A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. *Genes Dev* **15**, 1349-1360 (2001).
- ¹⁰ MacQueen, A. J., Colaiacovo, M. P., McDonald, K. & Villeneuve, A. M. Synapsis-dependent and independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. *Genes Dev* 16, 2428-2442 (2002).
- ¹¹ Colaiacovo, M. P. *et al.* Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. *Dev Cell* **5**, 463-474 (2003).
- ¹² Wicky, C. *et al.* Multiple genetic pathways involving the Caenorhabditis elegans Bloom's syndrome genes him-6, rad-51, and top-3 are needed to maintain genome stability in the germ line. *Mol Cell Biol* **24**, 5016-5027 (2004).
- ¹³ Zalevsky, J., MacQueen, A. J., Duffy, J. B., Kemphues, K. J. & Villeneuve, A. M. Crossing over during Caenorhabditis elegans meiosis requires a conserved MutS-based pathway that is partially dispensable in budding yeast. *Genetics* **153**, 1271-1283 (1999).
- ¹⁴ Reddy, K. C. & Villeneuve, A. M. C. elegans HIM-17 links chromatin modification and competence for initiation of meiotic recombination. *Cell* **118**, 439-452 (2004).
- ¹⁵ Chin, G. M. & Villeneuve, A. M. C. elegans mre-11 is required for meiotic recombination and DNA repair but is dispensable for the meiotic G(2) DNA damage checkpoint. *Genes Dev* **15**, 522-534 (2001).
- ¹⁶ Degtyareva, N. P. *et al.* Caenorhabditis elegans DNA mismatch repair gene msh-2 is required for microsatellite stability and maintenance of genome integrity. *Proc Natl Acad Sci U S A* **99**, 2158-2163 (2002).
- ¹⁷ Kelly, K. O., Dernburg, A. F., Stanfield, G. M. & Villeneuve, A. M. Caenorhabditis elegans msh-5 is required for both normal and radiation-induced meiotic crossing over but not for completion of meiosis. *Genetics* **156**, 617-630 (2000).
- ¹⁸ Alpi, A., Pasierbek, P., Gartner, A. & Loidl, J. Genetic and cytological characterization of the recombination protein RAD-51 in Caenorhabditis elegans. *Chromosoma* **112**, 6-16 (2003).

- ¹⁹ Dernburg, A. F. *et al.* Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. *Cell* **94**, 387-398 (1998).
- ²⁰ DeLong, L., Casson, L. P. & Meyer, B. J. Assessment of X chromosome dosage compensation in Caenorhabditis elegans by phenotypic analysis of lin-14. *Genetics* **117**, 657-670 (1987).
- ²¹ Plenefisch, J. D., DeLong, L. & Meyer, B. J. Genes that implement the hermaphrodite mode of dosage compensation in Caenorhabditis elegans. *Genetics* **121**, 57-76 (1989).
- ²² Hsu, D. R. & Meyer, B. J. The dpy-30 gene encodes an essential component of the Caenorhabditis elegans dosage compensation machinery. *Genetics* **137**, 999-1018 (1994).
- ²³ Broverman, S. A. & Meneely, P. M. Meiotic mutants that cause a polar decrease in recombination on the X chromosome in Caenorhabditis elegans. *Genetics* **136**, 119-127 (1994).
- ²⁴ Ooi, S. L., Priess, J. R. & Henikoff, S. Histone H3.3 variant dynamics in the germline of Caenorhabditis elegans. *PLoS Genet* **2**, e97 (2006).
- ²⁵ Couteau, F., Guerry, F., Muller, F. & Palladino, F. A heterochromatin protein 1 homologue in Caenorhabditis elegans acts in germline and vulval development. *EMBO Rep* **3**, 235-241 (2002).
- ²⁶ Whittle, C. M. *et al.* The genomic distribution and function of histone variant HTZ-1 during C. elegans embryogenesis. *PLoS Genet* **4**, e1000187 (2008).
- ²⁷ Andersen, E. C. & Horvitz, H. R. Two C. elegans histone methyltransferases repress lin-3 EGF transcription to inhibit vulval development. *Development* **134**, 2991-2999 (2007).
- ²⁸ Takasaki, T. *et al.* MRG-1, an autosome-associated protein, silences X-linked genes and protects germline immortality in Caenorhabditis elegans. *Development* **134**, 757-767 (2007).
- ²⁹ Christensen, J. *et al.* RBP2 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3. *Cell* **128**, 1063-1076 (2007).
- ³⁰ Simonet, T., Dulermo, R., Schott, S. & Palladino, F. Antagonistic functions of SET-2/SET1 and HPL/HP1 proteins in C. elegans development. *Dev Biol* **312**, 367-383 (2007).
- ³¹ Kelly, W. G., Xu, S., Montgomery, M. K. & Fire, A. Distinct requirements for somatic and germline expression of a generally expressed Caernorhabditis elegans gene. *Genetics* **146**, 227-238 (1997).