

Figure 1: Adjusted *P*-Values by Method across Neuropsychological Outcomes

Seventeen observed p-values for a set of 17 neuropsychological measures, and adjusted p-values per each method. A square-root scale is used to reduce overlapping points. Numbers in parentheses in the legend indicate the number of rejected hypotheses for that method. Symbols for outcomes with a null hypothesis rejected without adjustment indicate the following:

- + null hypothesis rejected using each adjustment method
- \times null hypothesis not rejected using any adjustment method
- o null hypothesis rejected by some adjustment methods

Note. WCST = Wisconsin Card Sorting Test, EXIT = Executive Interview, CVLT = California Verbal Learning Test. Adapted from Table 2 of Butters et al. (2004), Archives of General Psychiatry, 61(6), 587–595. Copyright (c)(2004), American Medical Association. All rights reserved.

Figure 2: P-Value Adjustment Method Performance across Compound-Symmetry Correlation Structures

Type I Error and Power Estimates for Uniform Hypothesis Set

The upper-left panel shows Type I error rates of the *p*-value adjustment methods across increasing values of the CS correlation parameter ρ . In this case, all M = 4 hypotheses are simulated to be true. Values near $\alpha = .05$ are optimal. Values well above $\alpha = .05$ indicate failure to protect Type I error at α . The remaining panels show different measures of power, where the 4 hypotheses are simulated to be false. Higher power is optimal, conditional upon Type I error not exceeding α .

 \sim

Figure 3: P-Value Adjustment Method Performance across Compound-Symmetry Correlation Structures

Type I Error and Power Estimates for Split Hypothesis Set

The upper-left panel shows Type I error rates of the *p*-value adjustment methods across increasing values of the CS correlation parameter ρ . In this case, all only 2 of the M = 4 hypotheses are simulated to be true. Values near $\alpha = .05$ are optimal. Values well above $\alpha = .05$ indicate failure to protect Type I error at α . The remaining panels show different measures of power, using the two hypotheses simulated to be false. Higher power is optimal, conditional upon Type I error not exceeding α .

ಲು

Domain	Outcome	No Adjustment	Bonferroni	Holm	Hochberg	Hommel	Sidak	TCH	D/AP	RSA	$\min P$	sd.minP
Information Processing Speed	Grooved Pegboard Digit-Symbol Trails A	$ \begin{vmatrix} < 0.0001 \\ < 0.0001 \\ < 0.0001 \end{vmatrix} $	$< 0.0001 \\ 0.0004 \\ 0.0011$	$< 0.0001 \\ 0.0004 \\ 0.0008$	$< 0.0001 \\ 0.0004 \\ 0.0008$	$< 0.0001 \\ 0.0004 \\ 0.0008$	$< 0.0001 \\ 0.0004 \\ 0.0011$	$< 0.0001 \\ 0.0001 \\ 0.0003$	$< 0.0001 \\ 0.0001 \\ 0.0003$	$< 0.0001 \\ < 0.0001 \\ 0.0002$	$\begin{array}{c} 0.0017 \\ 0.0004 \\ 0.0173 \end{array}$	$0.0013 \\ 0.0005 \\ 0.0146$
Visuospatial	Block Design Simple Drawings Clock Drawing	<0.0001 0.0003 0.0037	$0.0007 \\ 0.0052 \\ 0.0629$	$\begin{array}{c} 0.0006 \\ 0.0037 \\ 0.0333 \end{array}$	$\begin{array}{c} 0.0006 \\ 0.0037 \\ 0.0333 \end{array}$	$\begin{array}{c} 0.0005 \\ 0.0037 \\ 0.0259 \end{array}$	$\begin{array}{c} 0.0007 \\ 0.0052 \\ 0.0611 \end{array}$	$\begin{array}{c} 0.0002 \\ 0.0013 \\ 0.0152 \end{array}$	$\begin{array}{c} 0.0002 \\ 0.0017 \\ 0.0245 \end{array}$	$< 0.0001 \\ 0.0010 \\ 0.0159$	$\begin{array}{c} 0.0006 \\ 0.0307 \\ 0.0511 \end{array}$	$\begin{array}{c} 0.0007 \\ 0.0247 \\ 0.0371 \end{array}$
Executive	Trails B WCST EXIT Stroop	<0.0001 0.0027 0.0076 0.0202	$\begin{array}{c} 0.0007 \\ 0.0459 \\ 0.1286 \\ 0.3428 \end{array}$	$\begin{array}{c} 0.0006 \\ 0.0270 \\ 0.0530 \\ 0.1008 \end{array}$	$\begin{array}{c} 0.0006 \\ 0.0270 \\ 0.0510 \\ 0.0874 \end{array}$	$\begin{array}{c} 0.0005 \\ 0.0216 \\ 0.0437 \\ 0.0807 \end{array}$	$\begin{array}{c} 0.0007 \\ 0.0449 \\ 0.1211 \\ 0.2927 \end{array}$	$\begin{array}{c} 0.0002 \\ 0.0111 \\ 0.0308 \\ 0.0806 \end{array}$	$\begin{array}{c} 0.0002 \\ 0.0176 \\ 0.0456 \\ 0.1348 \end{array}$	$< 0.0001 \\ 0.0131 \\ 0.0352 \\ 0.0557$	$\begin{array}{c} 0.0495 \\ 0.1432 \\ 0.1910 \\ 0.5847 \end{array}$	$\begin{array}{r} 0.0371 \\ 0.0726 \\ 0.0866 \\ 0.2475 \end{array}$
Memory	CVLT Modified Rey- Osterrieth Logical Memory	0.0060 0.0085 0.0906	$0.1026 \\ 0.1444 \\ > 0.9999$	$0.0483 \\ 0.0530 \\ 0.2719$	$0.0483 \\ 0.0510 \\ 0.2599$	$0.0362 \\ 0.0437 \\ 0.2599$	$0.0978 \\ 0.1350 \\ 0.8012$	$0.0246 \\ 0.0346 \\ 0.3241$	$0.0353 \\ 0.0522 \\ 0.5059$	$0.0249 \\ 0.0361 \\ 0.4410$	$0.0796 \\ 0.1069 \\ 0.6740$	$\begin{array}{r} 0.0519 \\ 0.0596 \\ 0.2475 \end{array}$
Language	Boston Naming Test Animal Fluency Language Fluency Spot-The-Word	0.0010 0.0218 0.1812 0.2599	$\begin{array}{c} 0.0168 \\ 0.3713 \\ > 0.9999 \\ > 0.9999 \end{array}$	$\begin{array}{c} 0.0109 \\ 0.1008 \\ 0.3624 \\ 0.3624 \end{array}$	$\begin{array}{c} 0.0109 \\ 0.0874 \\ 0.2599 \\ 0.2599 \end{array}$	$\begin{array}{c} 0.0109 \\ 0.0874 \\ 0.2599 \\ 0.2599 \end{array}$	$\begin{array}{c} 0.0167 \\ 0.3130 \\ 0.9666 \\ 0.9940 \end{array}$	$\begin{array}{c} 0.0041 \\ 0.0870 \\ 0.5615 \\ 0.7108 \end{array}$	$\begin{array}{c} 0.0056 \\ 0.1371 \\ 0.7446 \\ 0.9528 \end{array}$	$0.0045 \\ 0.1016 \\ 0.6822 \\ 0.8896$	$\begin{array}{c} 0.0952 \\ 0.2428 \\ 0.9076 \\ 0.9750 \end{array}$	$\begin{array}{r} 0.0570 \\ 0.0974 \\ 0.3218 \\ 0.3218 \end{array}$

Table S1: Adjusted P-Values by Method across Neuropsychological Outcomes

Note. WCST = Wisconsin Card Sorting Test, EXIT = Executive Interview, CVLT = California Verbal Learning Test. Adapted from Table 2 of Butters et al. (2004), Archives of General Psychiatry, 61(6), 587–595. Copyright ((2004)), American Medical Association. All rights reserved.

	Outcome Types				
	Blo	ck 1	Block 2		
Hypothesis Sets	V1	V2	V3	V4	
Uniform - True	TN	TN	TN	TN	
Uniform - False	$_{\rm FN}$	$_{\rm FN}$	$_{\rm FN}$	$_{\rm FN}$	
Split - Uniform	TN	TN	$_{\rm FN}$	$_{\rm FN}$	
Split - Split	TN	$_{\rm FN}$	$_{\rm FN}$	TN	

Table S2: BS Simulation Series Parameters

The M outcomes of the r^{th} replicate in a given trial are simulated according to the choice of hypothesis set. Outcomes V1-V4 may be one of two types. True null (TN) outcomes are simulated with effect size 0.0, and are used to estimate Type I error. False null (FN) outcomes are simulated with effect size 0.5, and are used to estimate power.

Correlation Structure	V1	V2	V3	V4
V1	1	W	B	B
V2	W	1	B	B
V3	B	B	1	W
V4	B	B	W	1

Data may be simulated with a block symmetry (BS) correlation structure, where all outcomes within a block are equicorrelated with parameter W, and outcomes from different blocks are equicorrelated with parameter B, where W > B. The W and B parameters take on values of $\{0.2, 0.5, 0.8\}$ and $\{0.0, 0.2, 0.5\}$, respectively.

Figure S1: Bootstrap Empirical MinP Null Distributions for the Illustrative Example

For the minP method, an adjusted p-value p_{aj} , j = 1 to 4, is calculated by the area left of p_j and below the distribution curve based on all bootstrap outcomes, B(1)-B(4). For the sd.minP method, p_{aj} , j = 1 to 4, is calculated by the area left of p_j and below the distribution curve based on outcomes B(1)-B(j), and adjusted to ensure the same order of the observed p_j 's.

6

Figure S2: P-Value Adjustment Method Performance across Block-Symmetry Correlation Structures

Type I Error and Power Estimates for Uniform Hypothesis Set

Each figure represents a different hypothesis set. The upper-left panel of each figure shows Type I error rates of the *p*-value adjustment methods across increasing values of the block-symmetry correlation parameters *B* and *W*. Values near $\alpha = 0.05$ are optimal. Values well above $\alpha = 0.05$ indicate failure to protect Type I error at α . Higher power is optimal, conditional upon Type I error not exceeding α .

Figure S3: P-Value Adjustment Method Performance across Block-Symmetry Correlation Structures

Type I Error and Power Estimates for Split - Uniform Hypothesis Set

Each figure represents a different hypothesis set. The upper-left panel of each figure shows Type I error rates of the *p*-value adjustment methods across increasing values of the block-symmetry correlation parameters *B* and *W*. Values near $\alpha = 0.05$ are optimal. Values well above $\alpha = 0.05$ indicate failure to protect Type I error at α . Higher power is optimal, conditional upon Type I error not exceeding α .

Figure S4: P-Value Adjustment Method Performance across Block-Symmetry Correlation Structures

Type I Error and Power Estimates for Split - Split Hypothesis Set

Each figure represents a different hypothesis set. The upper-left panel of each figure shows Type I error rates of the *p*-value adjustment methods across increasing values of the block-symmetry correlation parameters *B* and *W*. Values near $\alpha = 0.05$ are optimal. Values well above $\alpha = 0.05$ indicate failure to protect Type I error at α . Higher power is optimal, conditional upon Type I error not exceeding α .