Η.	sapiens	DVEFE	/VGDA	PEKVGE	KQAEI	DA-A	KSIT	rng:	SDDGA	AQPS1	S	-TAQ	eqdi	DVLI	VDS	DEEDS	57
М.	musculus	DVEFE	/VGDS	PEKVGE	KQAEI	A-A	KSI <i>I</i>	ANGS	SDDGA	AQPSI	'S	-TAQ	eqdi	DVLI	VDS	DEEGP	57
Χ.	laevis	FEV	/VGDV	PEKGPÇ)KPPEE	S-VI	KNIJ	rng:	SDDGA	AQPSI	.s	-KAQ	DQDI	DVLI	VDS	DEESP	54
D.	rerio	7	/VGDA	PDKAPF	PSAPE	E-GI	KNI <i>I</i>	ANGI	VKDSA	AQPSI	SSF	KAAV	eddi	DVLI	VDS	DEEPS	54
S.	cerevisiae	CN	CSLP	DVEVPI	IKANN	ISPSI	KNEE	SEEF	KNEKO	GADVV	/AT1	CNSH	GKDO	GIVI	LD-	DDEGE	56
D.	melanogaster		DDG	PSTSKF	RSRPNE	IVVE	EDDI	DDCI	LVIEE	EDEDÇ)AD	/VVV	ATDF	KLSV	'QSF	PKSGS	53
					. :		:.	:			:		*	: :	•	••	
Η.	sapiens	SN-NAI	DVSEE	ers rkf	KLDEF	(ENL)	S-A f	KRSI	RIEQ-	-KEEI	DD-	VI	ALD	100)		
М.	musculus	SN-STI	DCSGD	dka rkf	KLEEN	IEAA	S-T f	KKCI	LEQ-	-MEDE	PDD-	VI	ALD	100)		
Χ.	laevis	SSSNAI	OVGME	sasl kf	KLPDE	EAV	SST	KRKI	RIEPH	PVEED	DD-	II)	ALD	100)		
D.	rerio	SS-TMI	DTESS	N rkrk H	HDAEI	DDA	S-S F	KRKE	LDQ) PADI	DDDE	EDII	ALD	100)		
ς.	cerevisiae	ITIDA	EPING	S KKR PV	DTEIS	SEAP	S-N F	KRTH	KLVN-	EB	TNS	SDIV	ELD	100)		
D.	melanogaster	KRKP CI	EVIED	EDITEI	LESSE	DEP	AGP1	rkc i	KRSR-	-LDDS	SNPV	AVI	SID	100)		
			:	•		:	: .	.: :	:	:		::	:*				

Supplemental Figure 1. Sequence alignment of the C-terminus of Uba2. The C-terminal 100 amino acids of Uba2 from *H. sapiens, M. musculus, D. rerio, X. laevis, D. melanogaster and S. cerevisiae* were aligned using ClustalW2. Conserved clusters of basic amino acids potentially participating in nuclear import are underlined and highlighted in bold.

H.	sapiens	MVEKEEAGGGISEEEAAQYDRQIRLWGLEAQKRLRASRVLLVGLKGLGAEIAK	53
М.	musculus	MVEKEEAGGGGGGGGISEEEAAQYDRQIRLWGLEAQKRLRASRVLIVGMKGLGAEIAK	57
D .	rerio	MIDTIEKEDTIISEEEAAQYDRQIRLWGLDAQKRLRGSRVLLVGLRGLGAEVAK	54
Χ.	laevis	MVEKEEAVISEEEAAQYDRQIRLWGLEAQKRLRTSRVLLVGMRGLGAEVAK	51
D.	melanogaster	MVVDMDTSET-AVELTEAENELYDRQIRLWGLESQKRLRTAKILIAGLCGLGAEITK	56
S.	cerevisiae	MDMKVEKLSEDEIALYDRQIRLWGMTAQANMRSAKVLLINLGAIGSEITK	50
		· : ::* * *******: :* ·:* :::*: ·: ·:*:*:	
Н.	sapiens	NLILAGVKGLTMLDHEQVTPEDPGAQFLIRTGSVGRNRAEASLERAQNLNPMVDVKVDTE	113
М.	musculus	NLILAGVKGLTMLDHEQVSPEDPGAQFLIQTGSVGRNRAEASLERAQNLNPMVDVKVDTE	117
D.	rerio	NLILAGVKGLTLLDHEQVTEESRRAQFLIPVDADGQNHAQASLERAQFLNPMVEVKADTE	114
Χ.	laevis	NLILAGVKALTLLDHEQVSSEDSRAQFLIPSGSLGQNRAEASLNRARNLNPMVSVEADTE	111
D.	melanogaster	NIILSGVNSVKLLDDKDVTEEDFCSQFLVPRESLNTNRAEASLTRARALNPMVDISADRE	116
s.	cerevisiae	SIVLSGIGHLTILDGHMVTEEDLGSQFFIGSEDVGQWKIDATKERIQDLNPRVELNFDKQ	110
		.::*:*: : :** . *: *. :**:: . : :*: * : *** *.:. * :	
Η.	sapiens	DIEKKPESFFTQFDAVCLTCCSRDVIVKVDQICHKNSIKFFTGDVFGYHGYTFANLG-EH	172
М.	musculus	DVEKKPESFFTKFDAVCLTCCSRDVIIKVDQICHRNSIKFFTGDVFGYHGYTFANLG-EH	176
D.	rerio	PVESKPDDFFFQFDAVCLTRCSRDLMVRVDQLCASRNIKVFCGDVYGYNGYMFSDLGQEY	174
Χ.	laevis	NINQKSDDFFTQFDVVCLTSCPSDLLVRVNHICHKHNIKFFTGDVYGYHGSMFADLG-EH	170
D.	melanogaster	PLKEKTSEFFGQFDVVVVNGATNEELLRIDTICRDLGVKFIATDVWGTFGFYFASLQ-KH	175
s.	cerevisiae	DLQEKDEEFFQQFDLVVATEMQIDEAIKINTLTRKLNIPLYVAGSNGLFAYVFIDLI	167
		····* ··** ·** · · · · · · · · · · · ·	
Н.	sapiens	EFVEEKTKVAKVSQGVEDGPDT KRAKLD SSETTMV KKK VVFCPVKEALEV	222
М.	musculus	EFVEEKTKVAKVSQGVEDGPEAKRAKLDSSETTMVKKKVLFCPVKEALEV	226
D.	rerio	HYVEEKPKVVKGSNEANDGPEA KKPKID PNETTMV KK TISFCSLKEALEV	224
Χ.	laevis	EFVEEKAKVTKAKPLVEDGPEA KKAKID PTETILV KKK VQFCPLKDALEI	220
D.	melanogaster	SYVEDVINHKVVANSE KKKK YETVSIPTQRDVDYPGYSAWLDF	218
S.	cerevisiae	EFISEDEKLQSVRPTTVGPISSNRSIIEVTTRKDEEDEKKTYERIKTKNCYRPLNEVLST	227
		····· · · · · · · · · · · · · · · · ·	
Η.	sapiens	DWSSEKAKAALKRTTSDYFLLQVLLKFRTDKGRDPSSDTYEEDSELLLQIRNDVLDSLGI	282
М.	musculus	DWSGEKAKAALKRTAPDYFLLQVLLKFRTDKGRDPTSESYKEDAELLLQIRNDVFDSLGI	286
D.	rerio	DWTTEKAKSSLKRIPADYFLLQVLLKFRTDKGRDPQPDSFAEDSQLLLQIRDDVLETMGL	284
Χ.	laevis	DWRSEKAKSALKKTPTDYFLLQVLMKFRTDKGRDPQPSSYQEDSELLLQICSDVLDSLGV	280
D.	melanogaster	DVTEPSYLRKLKRNGPGVLLLSVLQKFRTTHKRDPSYKTREADLELLRGIRDELLPNS	276
S.	cerevisiae	ATLKEKMTQRQLKR-VTSILPLTLSILQYDLNQKGKAISFEQMKRDAAVWCENLGVPATV	286
		. : :* .* :: :::	
Η.	sapiens	SPDLLPEDFVRYCFSEMAPVCAVVGGILAQEIVKALSORDPPHNNFFFFDGMKGNGIVEC	342
Μ.	musculus	SPDLLPDDFVRYCFSEMAPVCAVVGGILAQEIVKALSORDPPHNNFFFFDGMKGSGIVEC	346
D.	rerio	SSDLLPNTFVSYCFSEMSPVCAVVGGVLGOEIVKALSORDAPHRNFFFFDGLKGSGVVDY	344
Χ.	laevis	SPDLLPKDFASYCFSEMAPVCAVVGGVLGOEIVKALSLRDAPHNNFFFFDGKTSNGIVDC	340
D .	melanogaster	ILGDEALGLIFAOISPAVAVVGGVVAOEVIKVVTKLEAPHRNLFVFDPETCAGYVEA	333
<i>s</i> .	cerevisiae	VKDDYVOOFIKOKGIEFAPVAAIIGGAVAODVINILGKRLSPLNNFIVFDGITLDMPLFE	346
~ .		· · · · · · · · · · · · · · · · · · ·	
Н.	sapiens	LGPK 346	
М.	musculus	LGPO 350	
D.	rerio	- FSSK 348	
	laevis	LGSK 344	
D.	melanogaster	IGAK 337	
ς.	cerevisiae	F 347	
-		:	

Supplemental Figure 2. Sequence alignment of Aos1. Amino acid sequences of Aos1 from *H. sapiens, M. musculus, D. rerio, X. laevis, D. melanogaster and S. cerevisiae* were aligned using ClustalW2. Conserved clusters of basic amino acids potentially participating in nuclear import are underlined and highlighted in bold.

Supplemental Figure 3. Transportin does not mediate import of CFP-Aos1 *in vitro*. *In vitro* import of CFP-Aos1 (1µM) in semipermeable HeLa cells was tested in the presence of Transportin (1µM) and 12 µM Ran with or without ATP. The transportin dependent cargo YFP-M9 (1µM) (Siomi and Dreyfuss, 1995; Nakielny et al., 1996) was included as a positive control. Nuclear accumulation of fluorescently labelled cargo proteins was analyzed by confocal microscopy. Bar, 10 µm.

Supplemental Figure 4. Importin 13 does not support import of CFP-Aos1 *in vitro*. (A) CFP-Aos1 (5 μ M) import was tested in semi-permeabilized HeLa cells in the presence of importin 13 (1 μ M) and Ran (12 μ M) with or without ATP. Alexa488 labelled Gst-Ubc9 (Mingot et al., 2001) served as a positive control. Nuclear accumulation of CFP-Aos1 and Gst-Ubc9-Alexa488 was analyzed by fluorescence microscopy. Bar, 10 μ m. (B) Importin 13 does not synergize with importin α/β for the import of CFP-Aos1. *In vitro* import of CFP-Aos1 (1 μ M) using semipermeable HeLa cells was performed with the indicated concentrations of Importin α and importin β in the presence of Ran (12 μ M), with or without addition of 2 μ M importin13. Nuclear accumulation of CFP-Aos1 was analyzed by confocal microscopy. Bar, 10 μ m.

Supplemental Figure 5. The Uba2 NLS is required and sufficient for import of the SUMO E1 holo-enzyme. *In vitro* import of E1 complexes reconstituted from wild type proteins (CFP-Aos1-wt, Uba2-wt-YFP) and/or NLS mutants (CFP-Aos1-KR195,196A₂, Uba2-KR623,624A₂-YFP). The assays were performed in semipermeabilized HeLa cells in the presence of cytosol and ATP-regenerating system (+). Control experiments contained ATP-depleting system (-) instead. Nuclear accumulation of CFP-Aos1 and Uba2-YFP was analyzed by fluorescence microscopy. Bar, 10 μ m.

Supplemental Figure 6. Importin α/β mediates *in vitro* import of the SUMO E1 holoenzyme via interaction with the Uba2 NLS. *In vitro* import of E1 complexes reconstituted from wild type proteins (CFP-Aos1-wt, Uba2-wt-YFP) and/or NLS mutants (CFP-Aos1-KR195,196A₂, Uba2-KR623,624A₂-YFP). The assays were performed in semi-permeabilized HeLa cells in the presence of importin α/β in the presence of wt Ran or RanQ69L. Nuclear accumulation of CFP-Aos1 and Uba2-YFP was analyzed by fluorescence microscopy. Bar, 10 µm.