Supporting Information

Investigation of the Stereochemistry of Intermolecular Conjugate

Additions of Nucleophiles to Acyclic Nitrosoalkenes

Jason A. Witek and Steven M. Weinreb*

Department of Chemistry, The Pennsylvania State University University Park, Pennsylvania 16802, United States

E-Mail: <u>smw@chem.psu.edu</u>

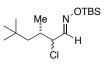
Table of Contents

Title Page	S1
Experimental details of new compounds	S2-S11
Crystal structures of compounds 11, 15, and 19	S12-S14
NMR spectra of new compounds	S15-S50

General. All non-aqueous reactions were carried out under a positive atmosphere of argon in flame-dried glassware unless otherwise noted. Anhydrous THF and CH₂Cl₂ were obtained from a solvent dispensing system. All other solvents and reagents were used as obtained from commercial sources without further purification. ¹H and ¹³C NMR spectra were recorded on 300, 360 or 400 MHz spectrometers. Flash column chromatography was performed using silica gel 60 (230-400 mesh).

General Procedure for the Synthesis of α -Chloro-*O*-silylaldoximes. To a stirred solution of the aldehyde (1 mmol) in CHCl₃ at 0 °C was added a catalytic amount of proline (0.05 mmol) and NCS (1.2 mmol). The resulting solution was warmed to rt and stirred for 12 h. The reaction mixture was diluted with pentane, filtered and washed with water. The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel eluting with a mixture of ethyl acetate and hexanes to provide the α -chloroaldehyde.

To a stirred solution of the α -chloroaldehyde (1 mmol) in CH₂Cl₂ (2 mL) and a spatula of 4 Å molecular sieves was added H₂NOTBS (147 mg, 1 mmol) and PPTS (13 mg, 0.05 mmol). The reaction mixture was stirred at rt for 12 h and then filtered through a pad of Celite. The solution was concentrated *in vacuo* and the residue was purified by flash column chromatography on silica gel eluting with a mixture of ethyl acetate and hexanes to provide the α -chloro-*O*-silylaldoxime.


2-Chloro-3,5,5-trimethylhexanal. The product was obtained as a clear oil (5.36 g) in 86% yield as an inseparable mixture of diastereomers in ~1:1 ratio: Isomer A: ¹H NMR (300 MHz, CDCl₃) δ 9.52 (d, J = 2.4 Hz, 1H), 4.15 (dd, J = 4.4, 2.5 Hz, 1H), 2.35-2.26 (m, 1H), 1.54-1.51 (m, 2H), 1.18 (d, J =

11.9 Hz, 3H), 0.94 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 197.0, 71.8, 47.6, 33.3, 31.4, 30.2, 19.9; Isomer B: ¹H NMR (300 MHz, CDCl₃) δ 9.52 (d, *J* = 2.9 Hz, 1H), 4.06 (dd, *J* = 4.9, 2.9 Hz, 1H), 2.26-2.23 (m, 1H), 1.50-1.46 (m, 2H), 1.03 (d, *J* = 12.7 Hz, 3H), 0.94 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 196.6, 71.3, 46.5, 32.6, 31.3, 30.1, 18.3

2-Chloro-3-phenylbutanal *O*-**TBS-oxime (3)**. The product was obtained as a clear oil (485 mg, 64% yield) as an inseparable mixture of $Ph \leftarrow H$ isomers: Data for major isomer: ¹H NMR (300 MHz, CDCl₃) δ 7.48 (d, *J* = 8.8 Hz, 1H), 7.38-7.20 (m, 5H), 4.64 (dd, *J* = 16.2 , 8.1 Hz, 1H), 3.22 (m, 1H), 1.51, (d, *J* = 7.0 Hz, 3H), 0.95 (s, 9H), 0.84 (s, 6H); ¹³C NMR (90 MHz, CDCl₃) δ 153.1, 141.6, 128.7, 128.0, 127.3, 63.0, 55.8, 45.6, 44.5, 26.0, 18.2; HRMS-ES+ (C₁₆H₂₇NOSiCl) calcd 312.1550 (MH⁺), found 312.1550.

2-Chloro-3-methoxy-3-phenylpropanal *O*-TBS-oxime (12). The product was obtained as a clear oil (667 mg, 19% yield) as an inseparable ~1: 1 mixture of isomers: Isomer A: ¹H NMR (360 MHz, CDCl₃) δ 7.59 (d, *J* = 8.6 Hz, 1H), 7.41-7.34 (m, 5H), 4.68 (dd, *J* = 8.6, 6.6 Hz, 1H), 4.45 (d, *J* = 6.6 Hz, 1H), 3.38 (d, *J* = 6.5 Hz, 3H), 0.84 (s, 9H), 0.13 (s, 6H); ¹³C NMR (90 MHz, CDCl₃) δ 151.4, 137.1, 128.5, 127.6, 127.4, 85.1, 60.8, 57.4, 54.0, 25.7, 18.2. Isomer B: ¹H NMR (360 MHz, CDCl₃) δ 7.46 (d, *J* = 8.6 Hz, 1H), 7.41-7.34 (m, 5H), 4.64 (dd, *J* = 8.6, 5.2 Hz, 1H), 4.51 (d, *J* = 5.2 Hz, 1H), 3.35 (d, *J* = 3.9 Hz, 3H), 0.84 (s, 9H), 0.13 (s, 6H); ¹³C NMR (90 MHz, CDCl₃) δ 151.4, 136.9, 128.6, 127.6, 127.4, 85.7, 60.0, 57.6, 52.4, 26.0, 18.2; HRMS-ES+ (C₁₆H₂₇NO₂ClSi) calcd 328.1500 (MH⁺), found 328.1509.

2-Chloro-3,5,5-trimethylhexanal *O***-TBS-oxime (16)**. The product was obtained as a clear oil (2.72 g, 86% yield) as an

inseparable mixture of isomers: Data for major isomer: ¹H NMR (300 MHz, CDCl₃) δ 7.50 (d, *J* = 6.1 Hz, 1H), 4.40 (m, 1H), 2.03 (m, 1H), 1.56 (m, 2H), 1.52 (d, *J* = 2.8 Hz, 2H), 0.95 (s, 9H), 0.97 (s, 9H) , 0.20 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 153.8, 64.8, 59.1, 47.7, 47.3, 31.3, 30.3, 26.5, 19.5, 18.6; HRMS-ES+ (C₁₅H₃₃NOClSi) calcd 306.2020 (MH⁺), found 306.2020.

General Procedure for the Conjugate Additions to Nitrosoalkenes. To a stirred solution of the malonate or sulfonamide (2 mmol) in THF (2.2 mL) was added KHMDS (4 mL, 0.5 M in PhMe, 2 mmol) at -78 °C. The resulting solution was then stirred for 45 min at that temperature. The *O*-TBS oxime (1 mmol) dissolved in THF (600 uL) was added slowly over 1 min, followed by dropwise addition of TBAF (2 mL, 1.0 M in THF, 2 mmol) over 3 min. The resulting solution was immediately transferred to an ice bath and stirred for an additional 2 h. The reaction mixture was diluted with concentrated aqueous NH₄Cl and EtOAc. The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo* to give a residue which was purified by flash column chromatography on silica gel eluting with a mixture of ethyl acetate and hexanes.

Diethyl 2-Allyl-2-(1-(hydroxyimino)-3-phenylbutan-2-

yl)malonate (5). The product was obtained as a clear oil (43 mg, 74% yield) as a ~9:1 mixture of *E/Z* oxime isomers: *(E)*-Oxime isomer: ¹H NMR (300 MHz, CDCl₃) δ 7.95 (br s, 1H), 7.66 (d, *J* = 9.6 Hz, 1H), 7.34-20 (m, 5H), 5.78-5.64 (m, 1H), 5.05 (br s, 1H), 5.00 (br d, *J* = 5.6 Hz, 1H), 4.28-4.01 (m, 4H), 3.39-3.32 (m, 1H), 3.25 (dd, J = 9.6, 4.6 Hz, 1H), 2.57 (d, *J* = 7.2 Hz, 2H), 1.32 (t, *J* = 3.6 Hz, 3H), 1.26 (t, *J* = 3.6 Hz, 3H), 1.18 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ

170.4, 170.3, 151.0, 146.8, 132.8, 128.7, 128.0, 126.9, 119.7, 62.0, 61.8, 60.9, 49.7, 40.0, 39.4, 19.5, 14.5, 14.4; HRMS-ES+ (C₂₀H₂₈NO₅) calcd 362.1967 (MH+), found 362.1971.

Diethyl 2-Ethyl-2-(1-(hydroxyimino)-3-phenylbutan-2-

yl)malonate (6). The product was obtained as a clear oil (93 mg, 72% yield) as a ~ 10:1 mixture of *E/Z* oxime isomers: *(E)*-oxime isomer: ¹H NMR (360 MHz, CDCl₃) δ 8.46 (br s, 1H), 7.65 (d, *J* = 9.7 Hz, 1H), 7.33-7.19 (m, 5H), 4.31-4.04 (m, 4H), 3.35-3.32 (m, 1H), 3.24 (dd, *J* = 9.7, 4.3 Hz, 1H), 1.91-1.84 (m, 2H), 1.34 (t, *J* = 1.8 Hz, 3H), 1.25 (t, *J* = 1.8 Hz, 3H), 1.17 (d, *J* = 7.7 Hz, 3H), 0.84 (t, *J* = 3.7 Hz, 3H); ¹³C NMR (90 MHz, CDCl₃) δ 170.5, 170.4, 150.5, 146.7, 128.3, 127.6, 126.4, 61.4, 61.3, 60.7, 48.9, 39.1, 28.4, 18.9, 14.1, 14.0, 8.8; HRMS-ES+ (C₁₉H₂₈NO₅) calcd 350.1967 (MH+), found 350.1963.

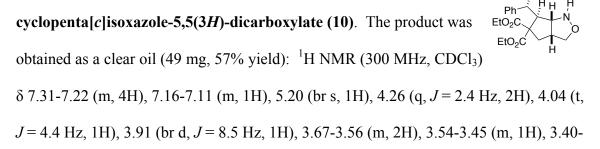
Diethyl 2-(1-(Hydroxyimino)-3-phenylbutan-2-yl)-2 methylmalonate (7). The product was obtained as a clear oil (37 mg, 63% $\stackrel{Me}{H_{EtO_2C_{Me}CO_2Et}}$ yield): ¹H NMR (360 MHz, CDCl₃) δ 7.65 (d, J = 9.1 Hz, 1H), 7.49 (br s, 1H), 7.33-7.19 (m, 5H), 4.13-4.00 (m, 4H), 3.30 (m, 2H), 1.43 (s, 3H), 1.36-1.15 (m, 9H); ¹³C NMR (90 MHz, CDCl₃) δ 170.8, 151.4, 146.2, 128.3, 127.8, 126.5, 61.5, 56.9, 50.3, 39.4, 20.9, 20.0, 13.9; HRMS-ES+ (C₁₈H₂₆NO₅) calcd 336.1811 (MH+), found 336.1810.

Diethyl 2-(1-(Hydroxyimino)-3-phenylbutan-2-yl)malonate (8). The product was obtained as a clear oil (35 mg, 68% yield): ¹H NMR (300 MHz, CDCl₃) δ 8.20 (br s, 1H), 7.67 (d, *J* = 7.5 Hz, 1H), 7.38-7.19 (m, 5H) 4.19 (m, 4H), 3.41 (d, *J* = 5.7 Hz, 1H), 3.22-3.08 (m, 2H), 1.30-1.23 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 168.8, 168.3, 151.4, 144.0, 129.2, 127.9, 127.4, 62.2, 62.0,

53.7, 47.1, 40.3, 19.6, 14.5; HRMS-ES+ $(C_{17}H_{23}NO_5Na)$ calcd 344.1474 (M+Na), found 344.1478.

Diethyl 2-Allyl-2-(1-(hydroxyimino)-3,5,5-trimethylhexan-2vl)malonate (17). The product was obtained as a clear oil (89 mg, 76%) CO₂Et EtO₂C yield): ¹H NMR (300 MHz, CDCl₃) δ 8.51 (br s, 1H), 7.58 (d, J = 9.4Hz, 1H), 5.78-5.69 (m, 1H), 5.10 (d, J = 8.3 Hz, 1H), 5.05 (s, 1H), 4.25-4.11 (m, 4H), 2.88 (dd, J = 9.3, 2.0 Hz, 1H), 2.80 (q, J = 2.1 Hz, 1H), 2.60 (q, J = 2.1 Hz, 1H), 2.1 (m, 1H), 1.36 (dd, J = 11.8, 2.3 Hz, 1H), 1.33 (t, J = 3.6 Hz, 3H), 1.24 (t, J = 3.6 Hz, 3H), 1.10 (dd, J = 14.1, 7.7 Hz, 1H), 0.90 (br s, 9H), 0.83, (d, J = 6.9 Hz, 3H); ¹³C NMR (75) MHz, CDCl₃) δ 170.8, 170.6, 150.8, 132.7, 119.6, 61.9, 61.8, 60.5, 51.9, 49.7, 39.5, 31.7, 30.9, 29.3, 17.9, 14.6, 14.4; HRMS-ES+ (C₁₉H₃₃NO₅) calcd 356.2437 (MH+), found 356.2428.

N-(1-(Hydroxyimino)-3,5,5-trimethylhexan-2-yl)-N,4dimethylbenzenesulfonamide (20). The product was obtained as a N(Me)Ts clear oil (41 mg, 74% yield): ¹H NMR (360 MHz, CDCl₃) δ 7.71 (d, J = 8.2 Hz, 1H), 7.31 (d, J = 9.1 Hz, 2H), 7.16 (d, J = 7.6 Hz, 2H), 6.91 (s, 1H), 4.23 (dd, J = 10.4, 7.8 Hz, 1H), 2.75 (s, 3H), 2.45 (s, 3H), 1.86 (m, 1H), 1.07 (dd, J = 11.5, 7.8 Hz, 2H), 0.98 (d, J =6.6 Hz, 3H) 0.95 (s, 9H); ¹³C NMR (90 MHz, CDCl₃) δ 147.8, 143.4, 135.9, 129.5, 127.6, 76.7, 61.9, 46.3, 30.8, 30.0, 29.8, 21.5, 19.7; HRMS-ES+ $(C_{17}H_{29}N_2O_3S)$ calcd 341.1899 (MH+), found 341.1894.


Synthesis of Diethyl 2-Allyl-2-(3-(Hydroxyimino)-1-methoxy-OMe N^{,OH} 1-phenylpropan-2-yl)malonate (13). To a stirred solution of diethyl EtO₂C allyl malonate (1.2 mmol) in THF (2.2 mL) was added KHMDS (2.4 mL,

CO₂Et

0.5 M in PhMe, 1.2 mmol) at -78 °C. The resulting solution was then stirred for 45 min at that temperature. TBAF was added (1.2 mL, 1.0 M in THF, 1.2 mmol) followed by dropwise addition of a solution of the *O*-TBS oxime **12** (1 mmol) dissolved in THF (600 uL). The resulting solution was immediately transferred to a 0 °C bath and stirred for an additional 1 h. The reaction mixture was diluted with concentrated aqueous NH₄Cl and EtOAc. The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo* to give a gradient of 25-50% EtOAc/hexanes. The product was obtained as a clear oil (39 mg) in 68% yield: ¹H NMR (300 MHz, CDCl₃) δ 7.78 (br s, 1H), 7.62 (d, *J* = 9.6 Hz, 1H), 7.37-7.24 (m, 5H), 5.68-5.54 (m, 1H), 5.11-5.05 (m, 2H), 4.81 (s, 1H), 4.38-4.16 (m, 4 H), 3.12 (s, 3H), 3.06 (d, *J* = 9.6 Hz, 1H), 2.72-2.70 (m, 2H) 1.36 (t, *J* = 3.6 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.0, 170.6, 148.6, 140.4, 131.5, 128.6, 127.9, 127.1, 120.2, 82.3, 61.9, 59.2, 57.2, 50.3, 38.9, 14.6, 14.5; HRMS-ES+ (C₂₀H₂₈NO₆) calcd 378.1917 (MH+), found 1378.1920.

General Procedure for the Synthesis of Isoxazolidines. A solution of α -alkyl aldoxime (0.1 mmol) in toluene (4 mL) was heated and stirred in a sealed tube at 190 °C for 5 h. The solution was concentrated *in vacuo* and the residue was purified by flash column chromatography on silica gel eluting with a mixture of ethyl acetate and hexanes.

Diethyl 6-(1-Phenylethyl)tetrahydro-1H-

3.28 (m, 1H), 3.06-2.95 (m, 1H), 2.67 (t, *J* = 4.5 Hz, 1H), 2.57 (dd, *J* = 12.7, 8.0 Hz, 1H), 2.07-1.98 (m, 1H), 1.34 (d, *J* = 5.2 Hz, 3H), 1.31 (t, *J* = 2.6 Hz, 3H), 1.00 (t, *J* = 3.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 170.8, 146.7, 128.5, 128.3, 126.4, 77.5, 69.6, 63.8, 61.5, 61.4, 58.2, 46.6, 41.8, 39.7, 22.5, 14.5, 14.0; HRMS-ES+ (C₂₀H₂₈NO₅) calcd 362.1967 (MH+), found 362.1970.

Diethyl 6-(Methoxy(phenyl)methyl)tetrahydro-1H-

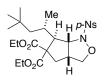
cyclopenta[c]isoxazole-5,5(3*H*)-dicarboxylate (14). The product was $EtO_2C_{EtO_2C}$, $N_O_{EtO_2C}$, N_O_{H} , N_O ,

General Procedure for Synthesis of *N*-Tosyl Isoxazolidines. To a stirred solution of isoxazolidine (0.1 mmol) was added TsCl (19 mg, 0.1 mmol) and K_2CO_3 (28 mg, 0.2 mmol). The reaction mixture was heated at reflux for 60 h and then diluted with H₂O and CH₂Cl₂. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo to give a residue, which was purified by flash column chromatography on silica gel eluting with a mixture of ethyl acetate and hexanes.

Diethyl 6-(1-Phenylethyl)-1-(4-

methylbenzenesulfonyl)tetrahydro-1*H*-cyclopenta[c]isoxazole-

5,5(3*H***)-dicarboxylate (11)**. The product was obtained as a white solid (38 mg, 75% yield); X-ray quality crystals were prepared via slow evaporation from isopropanol/dichloromethane; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.5 Hz, 2H), 7.42 (d, *J* = 7.1 Hz, 2H), 7.33-7.26 (m, 4H), 7.19-7.18 (m, 1H), 5.05 (t, *J* = 4.4 Hz, 1H), 4.51 (t, *J* = 3.6 Hz, 1H), 4.29 (q, *J* = 2.3 Hz, 2H), 3.84-3.78 (m, 1H), 3.72-3.63 (m, 2H), 3.41 (t, *J* = 3.9, 1H), 2.84 (t, *J* = 3.3 Hz, 1H), 2.68 (dd, *J* = 12.3, 8.7 Hz, 1H), 2.45 (s, 3H), 1.88 (t, *J* = 5.2 Hz, 1H), 1.48 (d, *J* = 6.7 Hz, 3H), 1.34 (t, *J* = 3.4 Hz, 3H), 1.11 (t, *J* = 3.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 171.0, 170.6, 146.8, 145.3, 134.0, 130.0, 129.3, 128.6, 128.3, 126.3, 65.9, 64.1, 62.0, 61.8, 57.4, 45.9, 41.8, 38.5, 22.1, 19.1, 14.5, 14.2; HRMS-ES+ (C₂₇H₃₄NO₇S) calcd 516.2056 (MH+), found 516.2053.

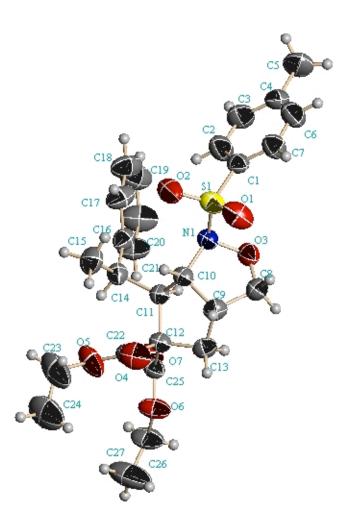

Diethyl 6-(Methoxy(phenyl)methyl)-1-(4-

methylbenzenesulfonyl)tetrahydro-1*H*-cyclopenta[c]isoxazole-

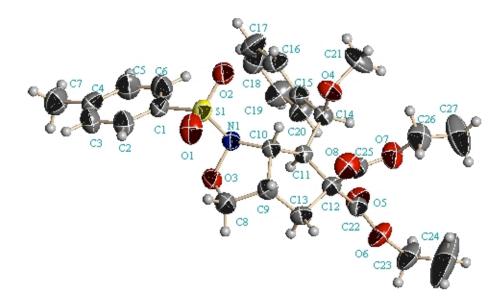
Ph H H Ts EtO₂C N EtO₂C H

5,5(3*H***)-dicarboxylate (15)**. The product was obtained as a white solid (22 mg, 68% yield); X-ray quality crystals were prepared via slow evaporation from isopropanol/dichloromethane; ¹H NMR (300 MHz, CDCl₃) δ 7.61 (d, *J* = 7.1 Hz, 2H), 7.43 (t, *J* = 3.5 Hz, 2H), 7.34-7.25 (m, 3H), 7.16 (d, *J* = 8.1 Hz, 2H), 5.45 (t, *J* = 4.5 Hz, 1H), 4.90 (s, 1H), 4.47 (t, *J* = 3.7 Hz, 1H), 4.41-4.32 (m, 1H), 4.31-4.17 (m, 4H), 3.64 (t, *J* = 4.3 Hz, 1H), 3.54 (d, *J* = 8.2 Hz, 1H), 3.30 (s, 3H), 2.93 (d, *J* = 8.9 Hz, 1H), 2.78 (dd, *J* = 13.3, 8.7 Hz, 1H), 2.39 (s, 1H), 1.69-1.61 (m, 2H), 1.41 (t, *J* = 3.6 Hz, 3H), 1.33 (t, *J* = 3.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 171.4, 171.3, 144.7, 140.5, 134.1, 129.5, 129.3, 128.5, 127.4, 127.0, 79.1, 77.5, 63.3, 62.1, 62.0, 58.7, 57.7, 46.8, 40.6, 30.1, 22.0, 14.5; HRMS-ES+ (C₂₇H₃₄NO₈S) calcd 532.2005 (MH+), found 532.1996.

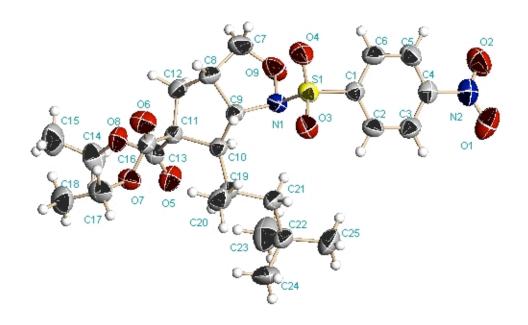
Synthesis of Diethyl 6-(4,4-Dimethylpentan-2-yl)-1-(4nitrobenzenesulfonyl)tetrahydro-1*H*-cyclopenta[*c*]isoxazole-5,5(3*H*)-dicarboxylate (19). A solution of diethyl 2-allyl-2-(1-

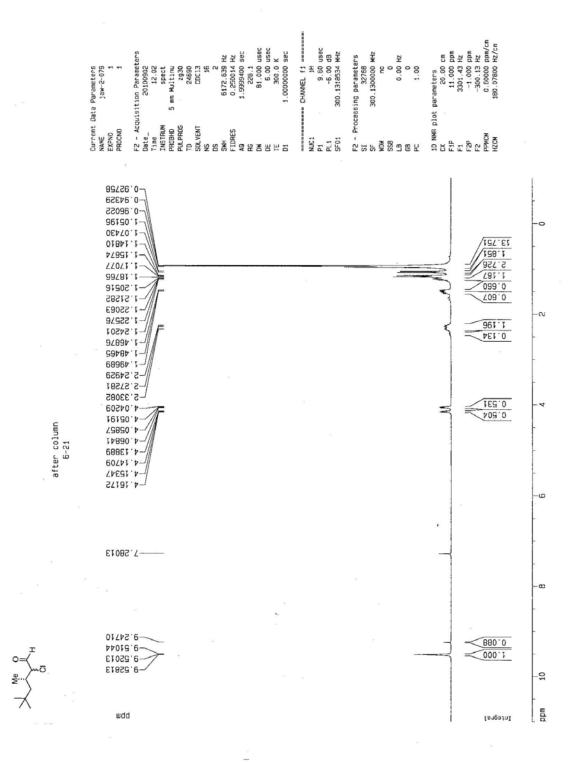

(hydroxyimino)-3,5,5-trimethylhexan-2- yl)malonate (17, 0.04 mmol) in toluene (4 mL) was heated and stirred in a sealed tube at 190 °C for 5 h. The solution was concentrated *in vacuo*. The crude residue was dissolved in CH₂Cl₂ (430 uL) and to this solution was added NsCl (11 mg, 0.05 mmol) and TEA (7 uL, 0.05 mmol). The reaction mixture was stirred for 7 h at rt and then diluted with CH_2Cl_2 . The combined organic layers were washed with water, dried over Na₂SO₄ and concentrated *in vacuo* to give a residue which was purified by flash column chromatography on silica gel eluting with 10-50% EtOAc/hexanes. The product was obtained as a white solid (16 mg, 68% yield); X-ray quality crystals were prepared via slow evaporation from isopropanol/dichloromethane; ¹H NMR (360 MHz, CDCl₃) δ 8.42 (d, J = 8.8 Hz, 2H), 8.18 (d, J = 8.8 Hz, 2H), 5.02 (t, J = 3.6 Hz, 1H), 4.46 (t, J = 3.9 Hz, 1H), 4.32-4.12 (m, 4H), 3.73 (d, J = 8.1 Hz, 1H), 3.66-3.58 (m, 1H), 2.73 (t, J = 6.5 Hz, 2H), 2.33 (br s, 1H), 1.73 (dd, J = 13.4, 9.1 Hz, 1H), 1.65 (d, J = 3.5 Hz, 1H), 1.61 (s, 1H), 1.45 (J = 13.9, 7.4 Hz, 1H), 1.32 (t, J = 3.6 Hz, 3H), 1.27 (t, J = 3.6 Hz, 3H), 1.00 (m, 11H); ¹³C NMR (90 MHz, CDCl₃) δ 171.0, 170.4, 150.7, 142.9, 130.1, 124.1, 76.7, 63.8, 63.5, 61.7, 61.4, 57.4, 52.4, 46.3, 40.3, 31.3, 30.0, 27.9, 17.6, 14.1, 13.9; HRMS-ES+ $(C_{25}H_{37}N_2O_9S)$ calcd 541.2220 (MH+), found 541.2206.

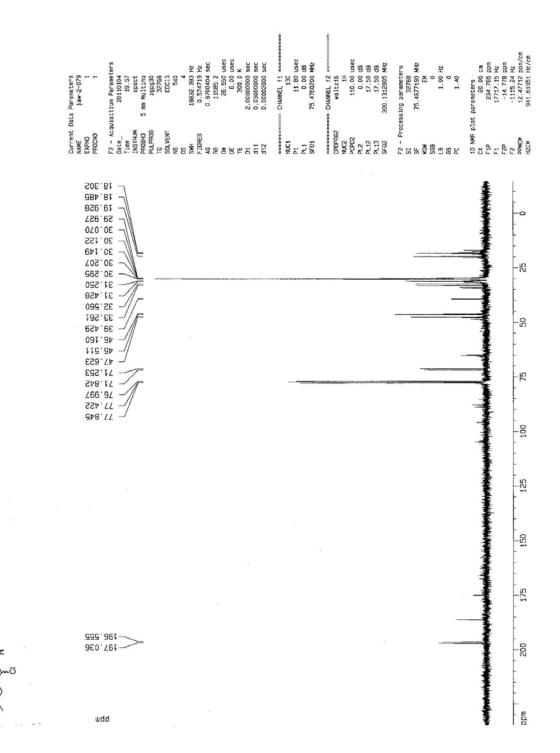
General Procedure for the Conversion of Aldoximes to Nitriles. A solution of α -alkyl aldoxime in pyridine (710 uL) was added MsCl (55 uL, 0.7 mmol) at 0 °C and the mixture was stirred for 12 h. The solution was diluted with H₂O and extracted with

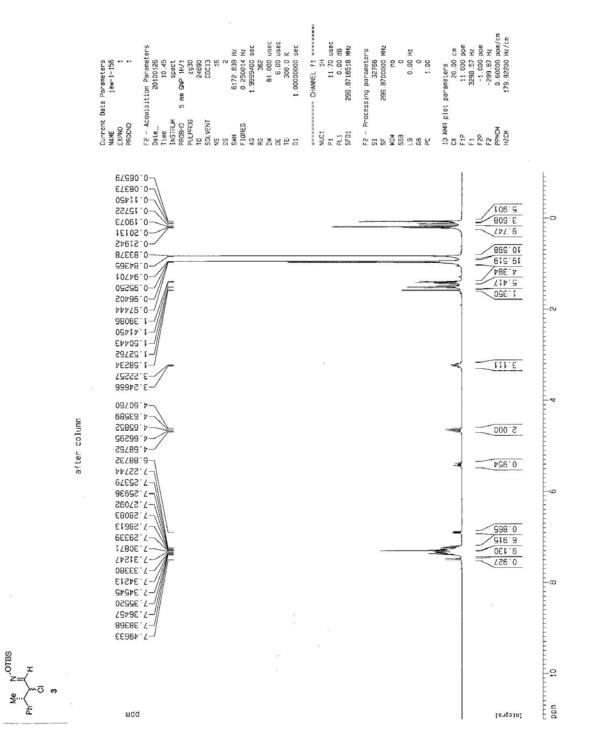

 CH_2Cl_2 . The combined organic layers were washed with water, dried over Na_2SO_4 and concentrated *in vacuo* to give a residue which was purified by flash column chromatography on silica gel eluting with 5- 25% EtOAc/hexanes.

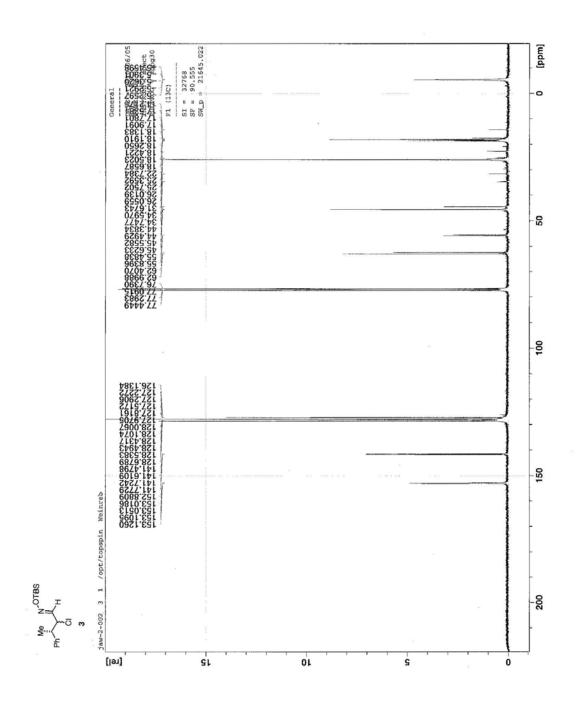
Diethyl 2-(1-Cyano-2-phenylpropyl)-2-ethylmalonate. The product was obtained as a clear oil (17 mg, 73% yield): ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.27 (m, 5H), 4.32-4.19 (m, 4H), 3.59 (d, J = 3.1 Hz, 1H), 3.25-3.16 (m, 1H), 2.25-2.14 (m, 2H), 1.43 (d, J = 7.1 Hz, 3H), 1.36-1.29 (m, 6H), 0.94 (t, J = 3.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.6, 169.3, 145.0, 129.3, 127.7, 127.4, 118.5, 62.5, 59.8, 42.9, 37.3, 27.2, 18.8, 14.4, 9.1; HRMS-ES+ (C₁₉H₂₆NO₄) calcd 332.1862 (MH+), found 332.1860.

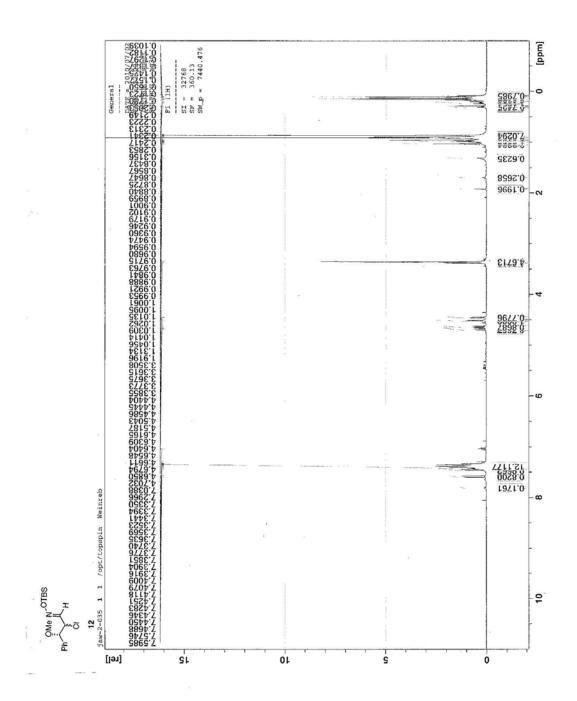

N-(1-Cyano-2,4,4-trimethylpentyl)-*N*,4dimethylbenzenesulfonamide (21). The product was obtained as a clear oil (17 mg, 60% yield): ¹H NMR (300 MHz, CDCl₃) δ 7.73 (d, *J* = 8.2 Hz, 2H), 7.40 (d, *J* = 8.1 Hz, 2H), 4.43 (d, *J* = 10.3 Hz, 1H), 2.83 (s, 3H), 2.48 (s, 3H), 1.92-1.86 (m, 1H), 1.75 (d, *J* = 13.9 Hz, 2H), 1.22 (d, *J* = 6.6 Hz, 3H), 0.97 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 145.0, 133.8, 130.5, 128.0, 115.7, 56.5, 46.1, 32.2, 31.7, 30.6, 30.1, 22.1, 20.1; HRMS-ES+ (C₁₇H₂₇N₂O₂S) calcd 323.1793 (MH+), found 323.1797. X-Ray Structure of Compound 11.

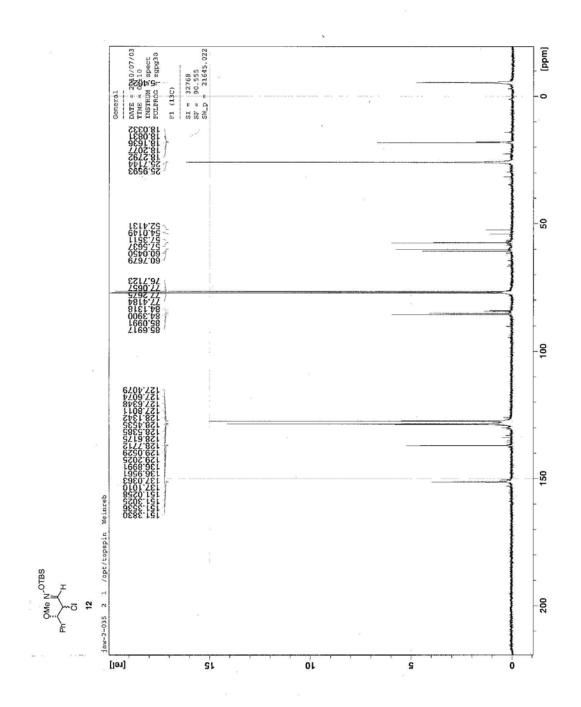


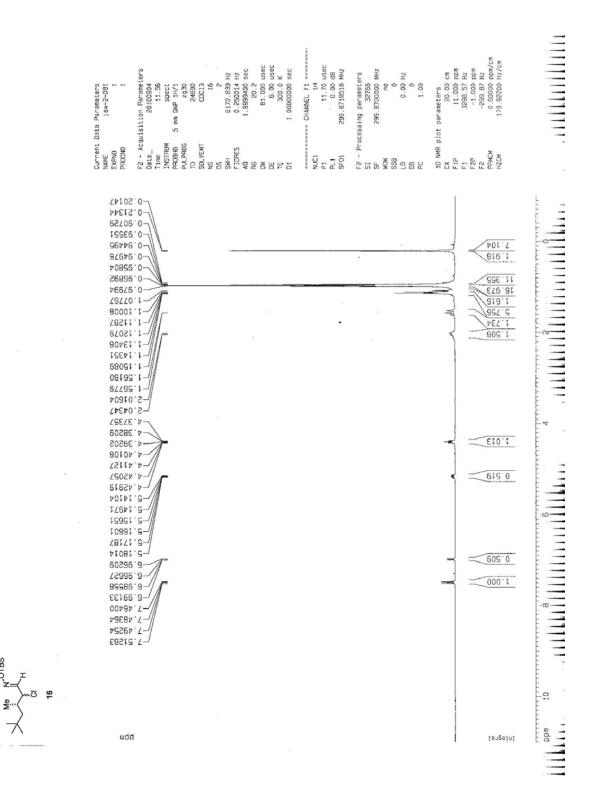

X-Ray Structure of Compound **15**.

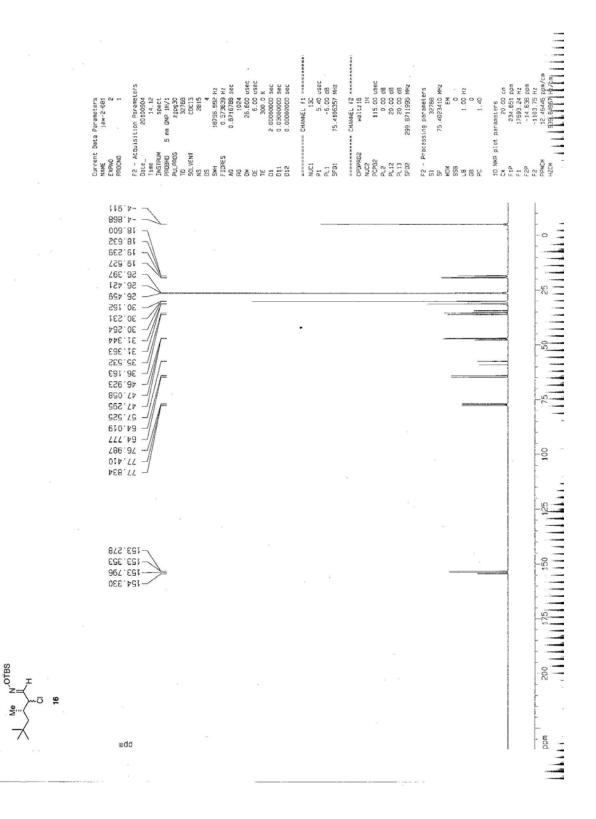


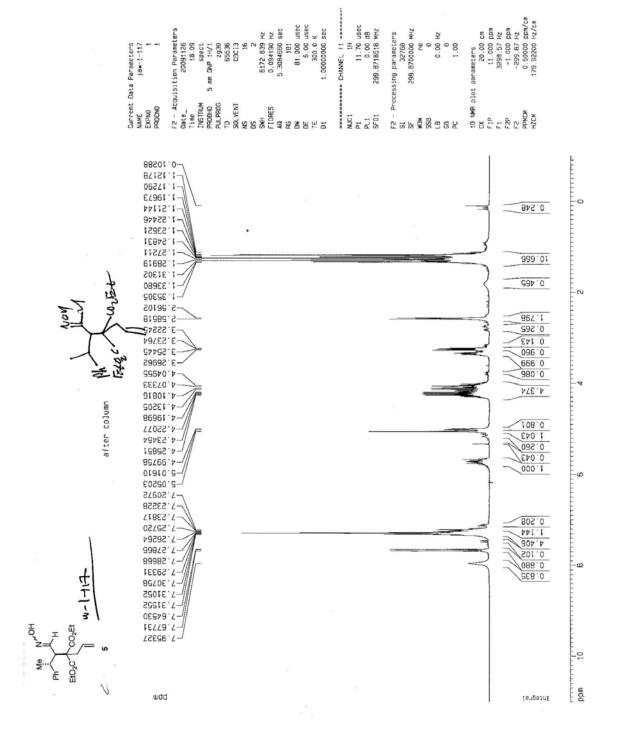

X-Ray Structure of Compound **19**.

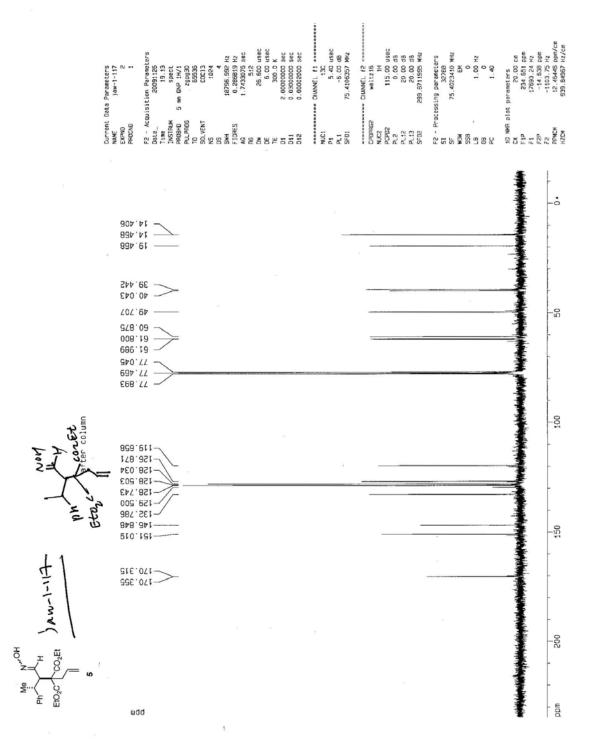


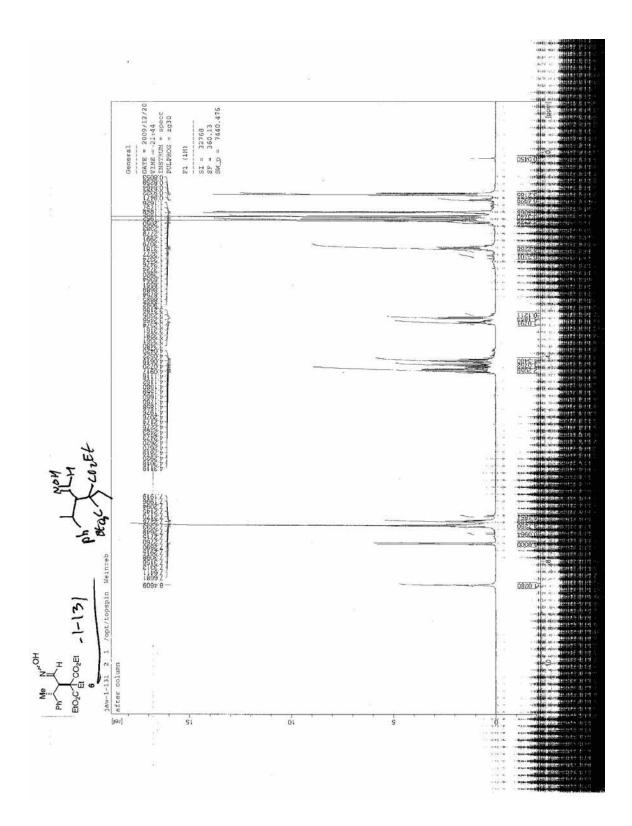


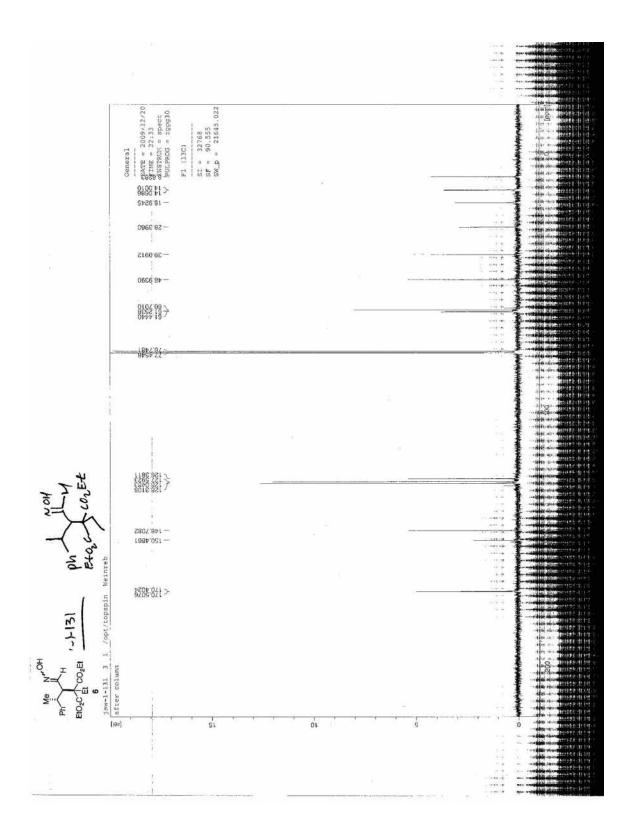


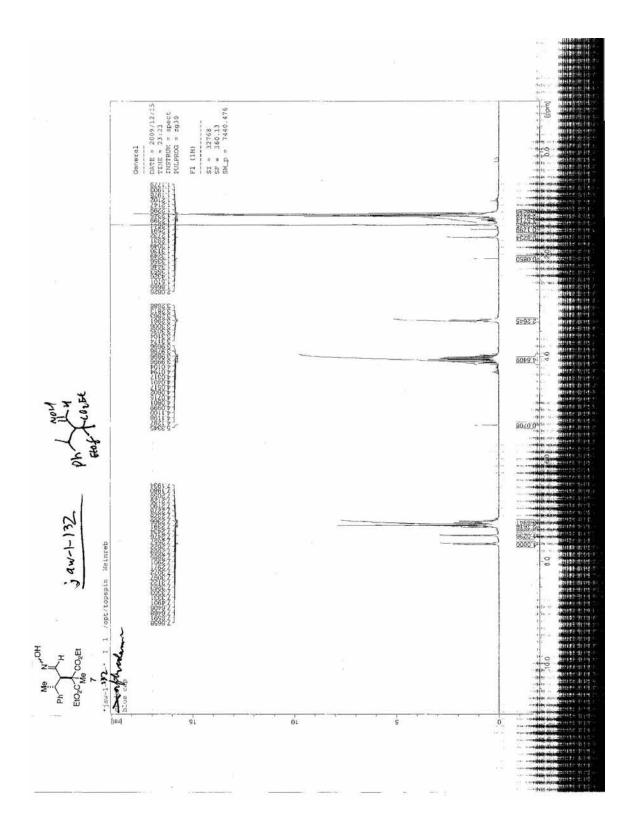


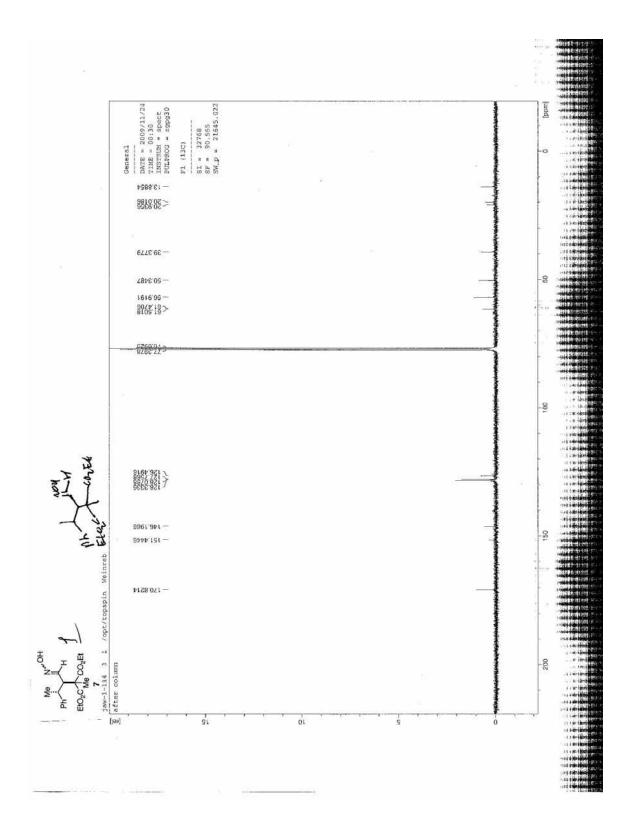


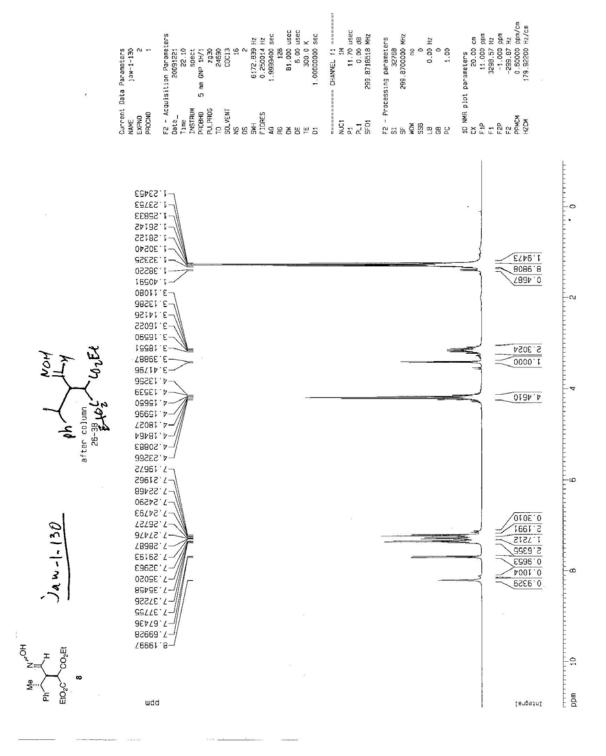


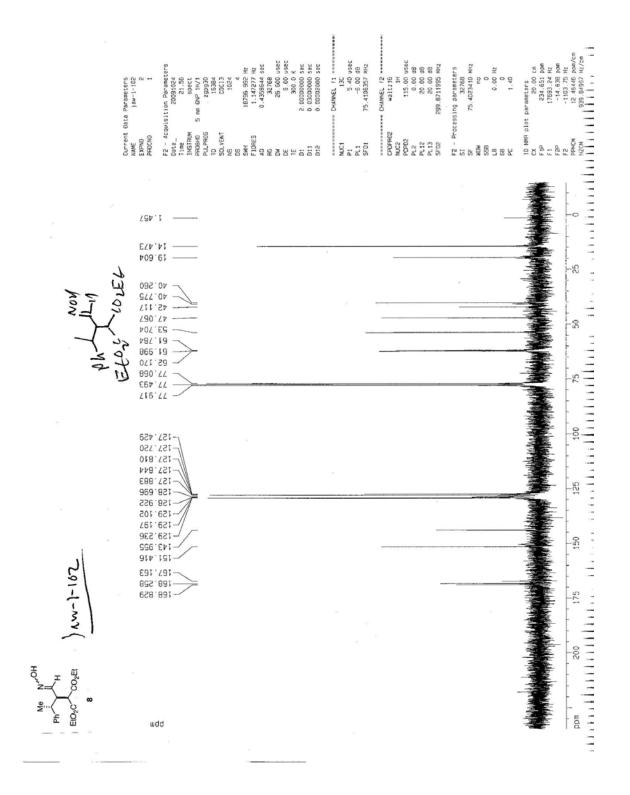


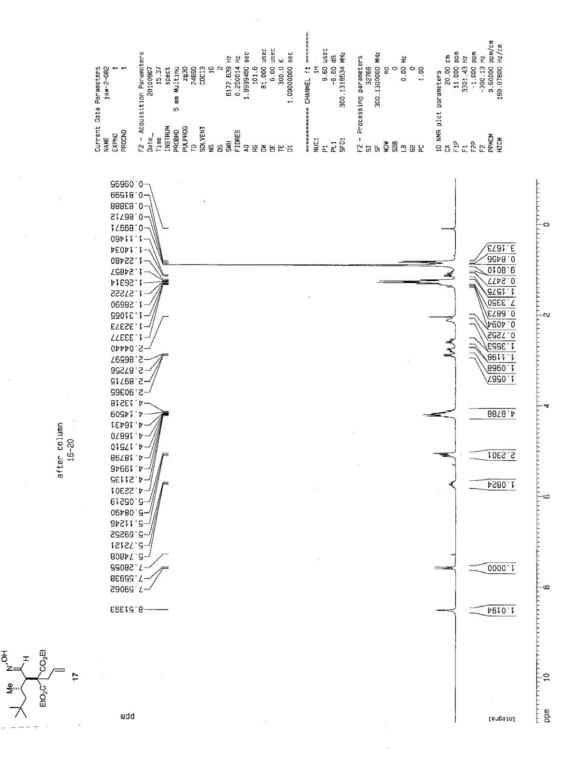

,OTBS

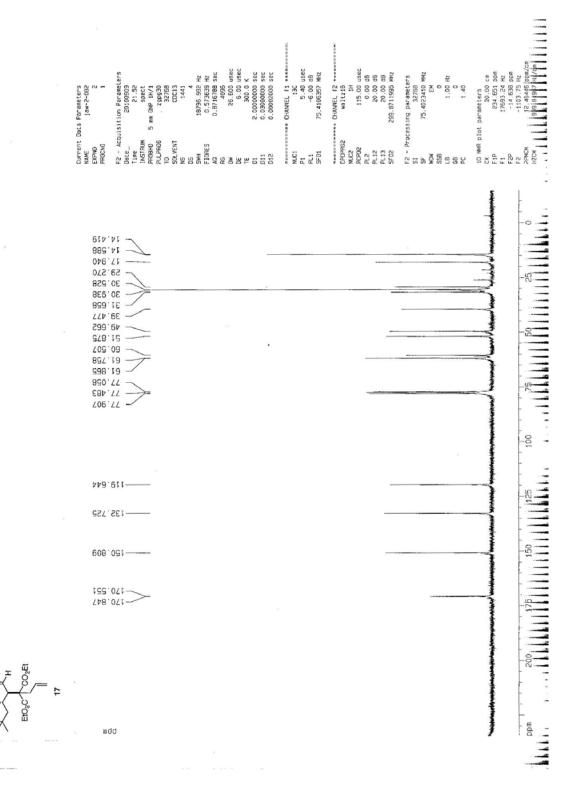


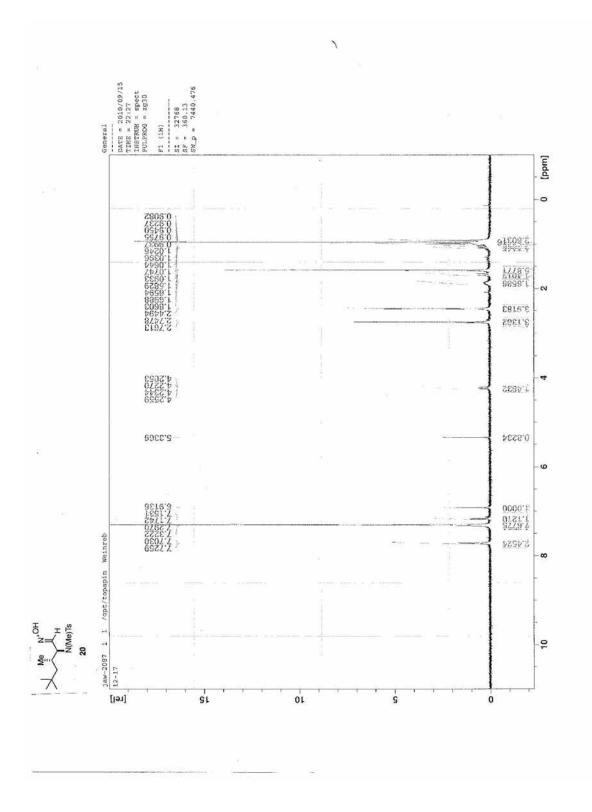


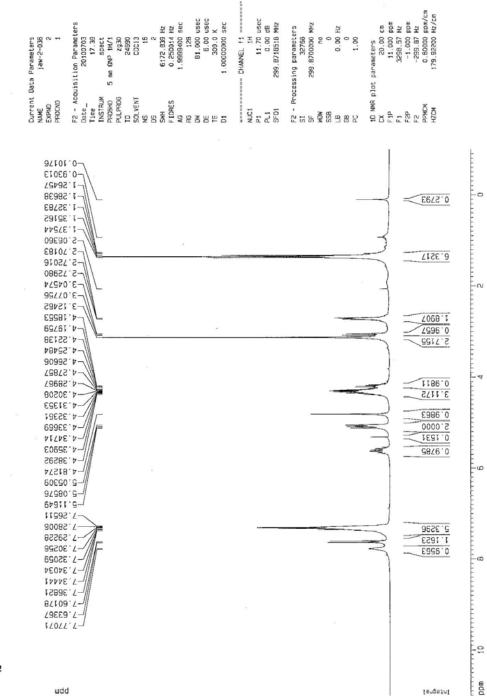










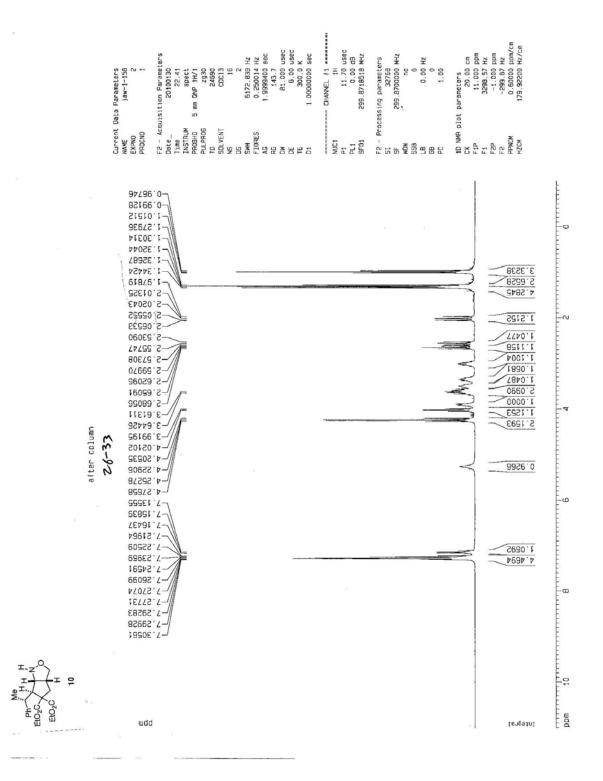


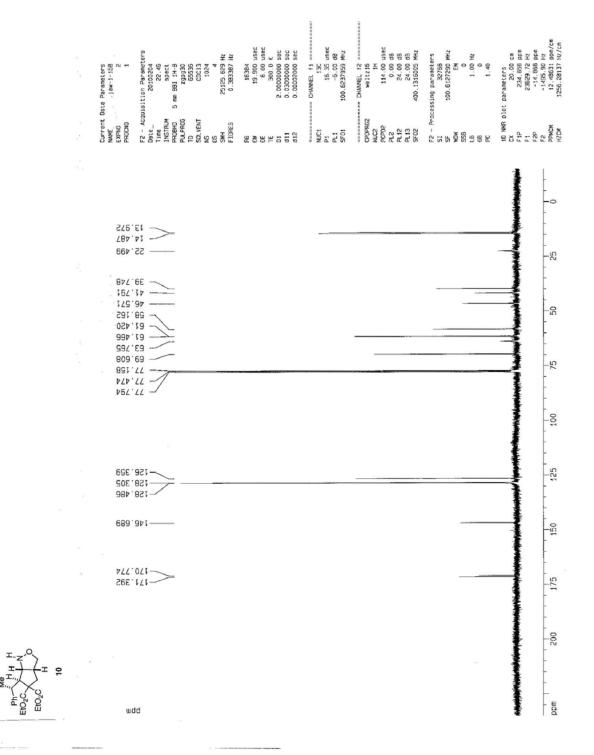
	0.173/0439 sec 0.173/0439 sec 1024 5.600 usec 6.00 usec 6.00 usec 0.0002000 sec 0.0002000 sec 0.0002000 sec 135C 5.40 usec 6.40 usec 5.40 usec 135C 135C 135C 135C 135C 0.005 135C 0.005 135C 0.005 135C 0.005 135C 0.005 0.	P.13 293.071955 Witz F702 293.0711955 Witz F7 >Processing parvanetures SF 75.402430 Witz MOM F3 32768 SS 75.402430 Witz MOM F0 0 MOM F0 0 B3 0 0 PC 1.00 Hz PC 26.00 Cm PC 27.00 Pm PC 237.01 Hz PC 121.51 Hz PCM 121.50 Pm PCM 121.000 Pm PSC 37.00 Pm PPACN 11.00000 Pm
Current D NAME EXPNO F2CMO F2 - ACQU 52 - ACQU Date Time PLOF POSTRUM PROST	A DAFES 86 06 01 01 01 01 01 87 01 87 01 87 01 87 01 87 01 87 01 87 01 87 01 87 01 87 01 87 01 87 01 87 01 87 01 86 01 86 01 86 01 86 01 86 01 10 10 10 10 10 10 10 10 10 10 10 10	P.L13 5F02 5F2 5F2 5F2 5F2 6G 6G 6G 6G 6G 6G 6G 7D 8CM 7D 7D 7D 7D 7D 7D 7D 7D 7D 7D 7D 7D 7D
285. ht 284. ht		255
906.19 20.347 20.347 20.347 20.347	,	
884.77 77.064 36.936		12

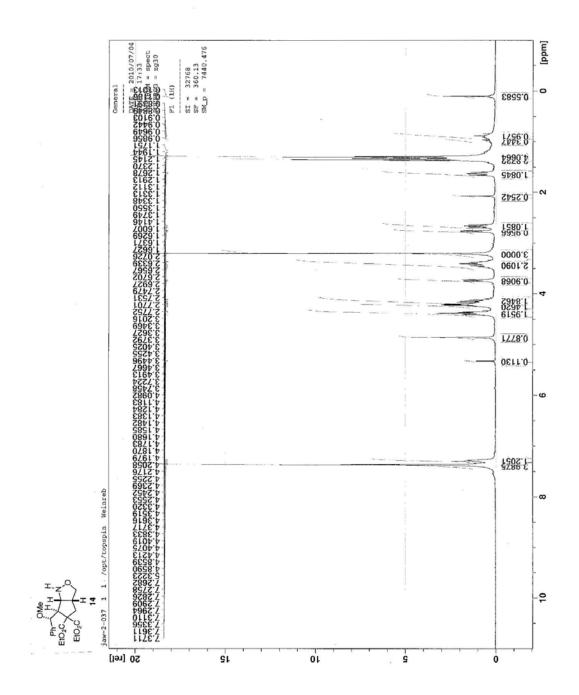
215'11	3
512.58	
755 68 -	
	£
×	
	*
	1
150.246	F
-157.146	*
127.931	
000.031	
158.586	
131.541	
140.400	
	4
799.841	
	1
585.071	¥
100.171	*
	*
	*
	£
wdd	
	4

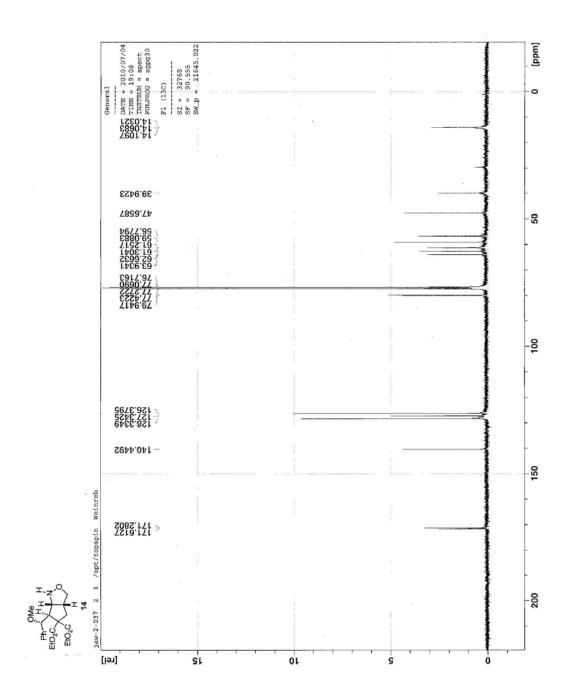
100

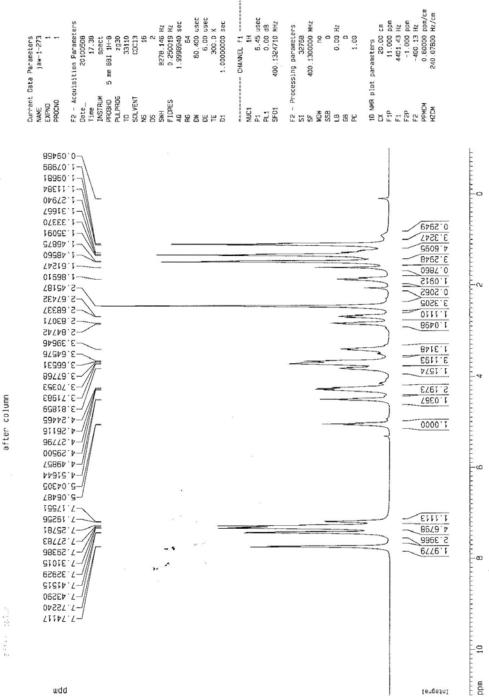
125

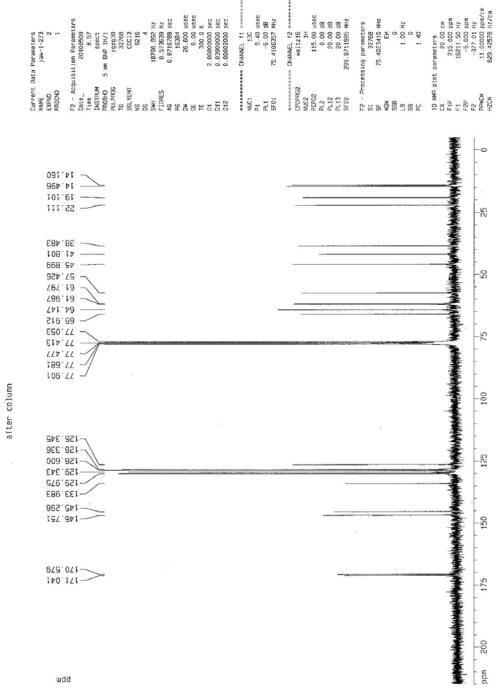

150

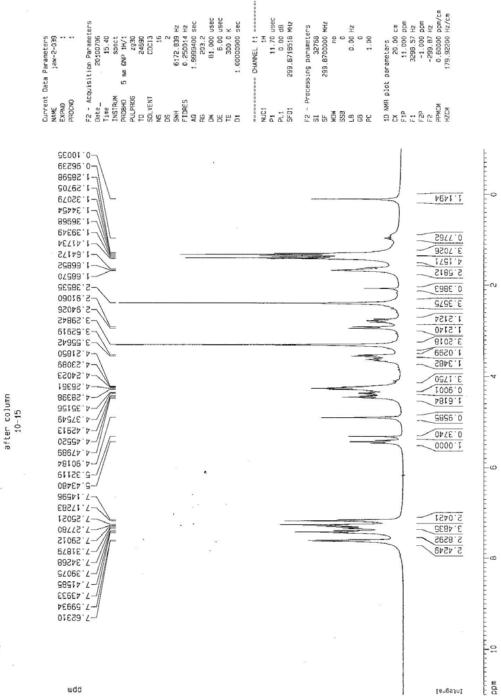

175

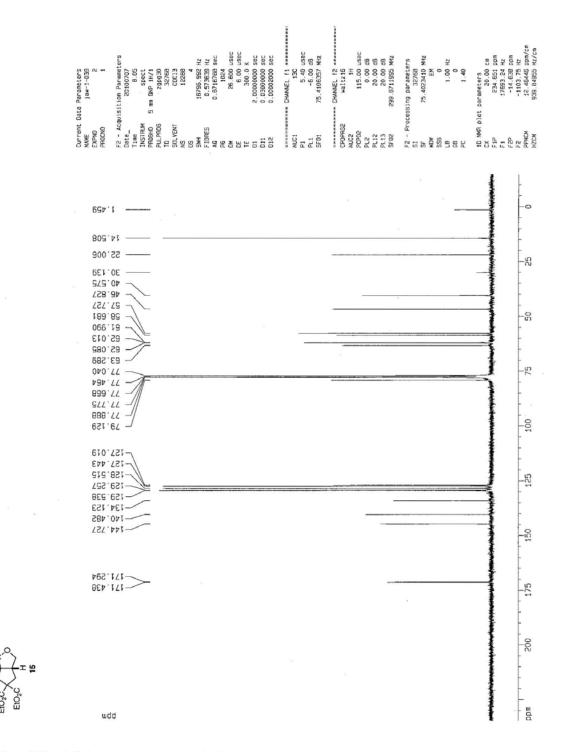

ppm 200

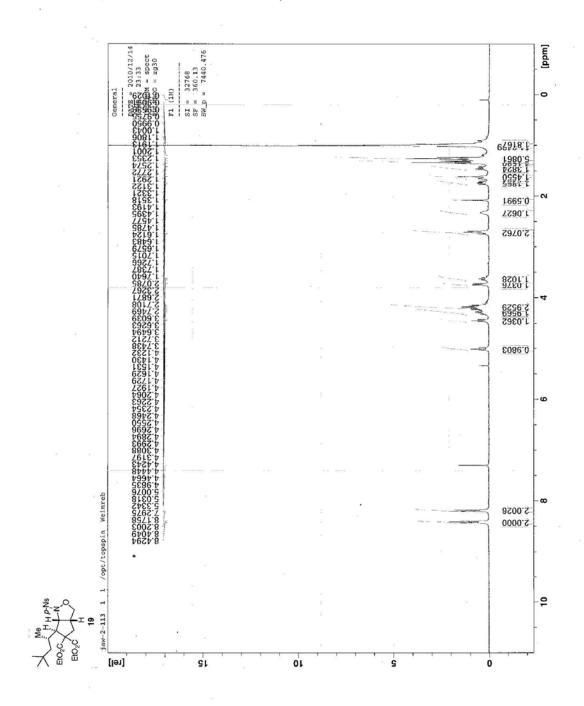

OME N'OH 13 EtO2C

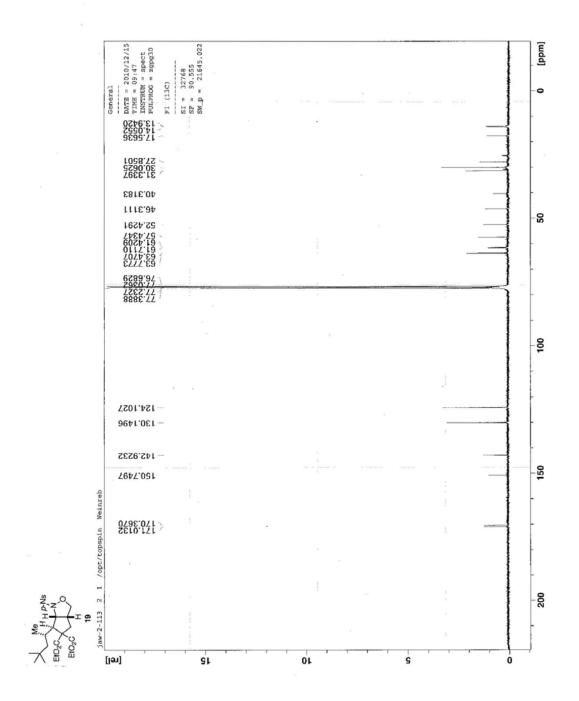

wdd



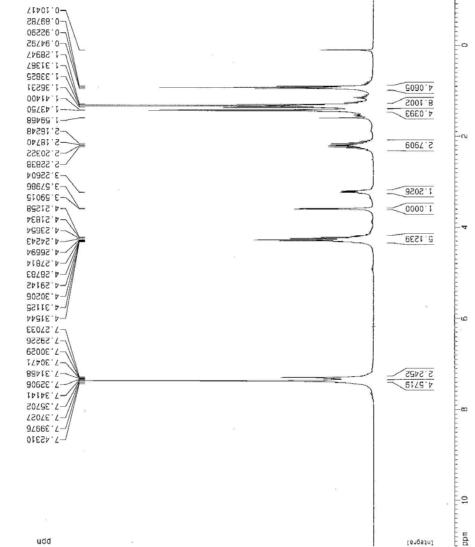

collino -

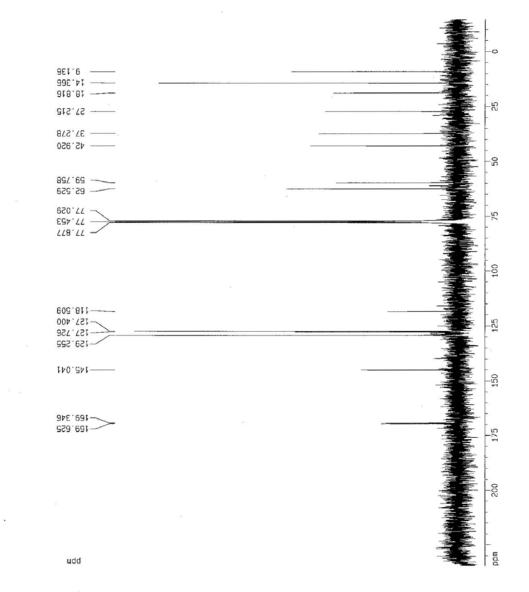


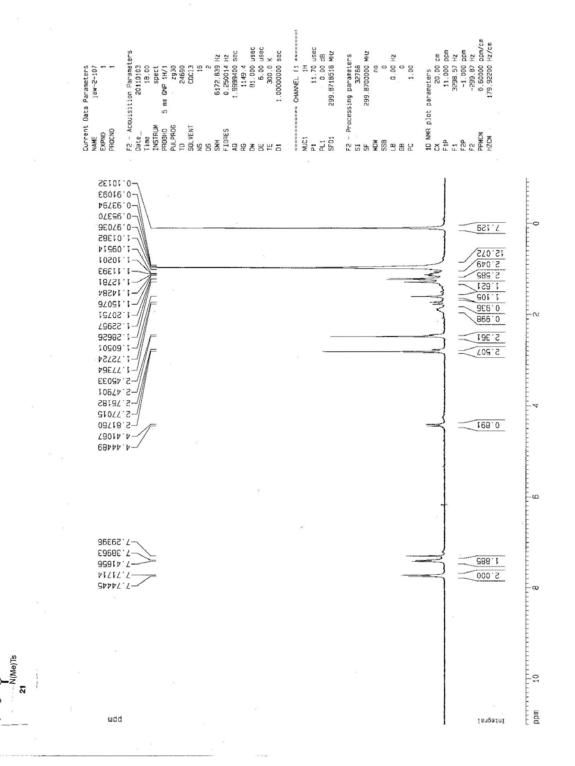

F

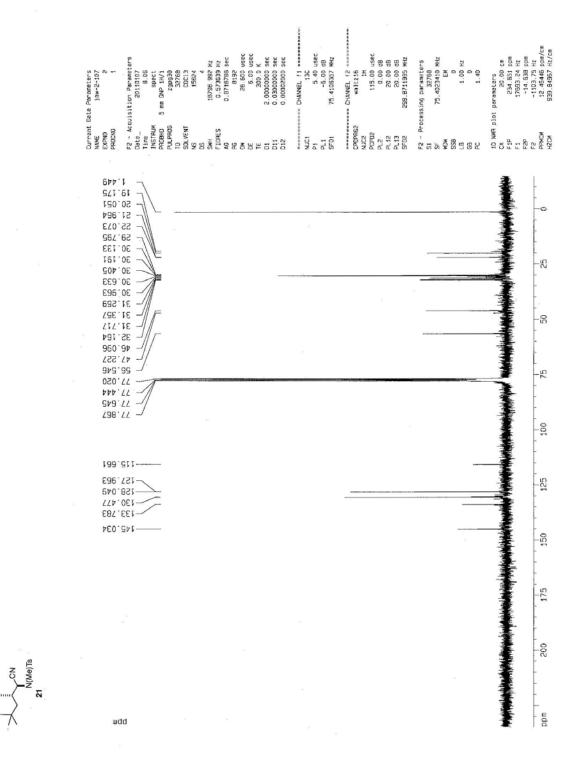

5 Q

S42








Eto2C Et CO2Et

Eto2C CO2Et

