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1 Equivalent Variable Diffusion Constant Model to [1]. Let pðx;tÞ ¼
ρðx;tÞ expð−UðxÞ∕kBTÞ. With this choice [1] becomes

e−UðxÞ∕kBT ∂ρ
∂t

¼ ∇ · ðDe−UðxÞ∕kBT∇ρÞ:

We may interpret this equation as describing the diffusion of a
particle with variable diffusion constant, D expð−UðxÞ∕kBTÞ, in
the presence of a “diffusive capacity,” expð−UðxÞ∕kBTÞ. Here
ρðx;tÞ represents the probability per unit available volume, with
the diffusion capacity representing the available volume fraction
(i.e., the available volume per unit volume).

2 Numerical Discretization of the Fokker–Plank Equation. In this sec-
tion we show how to derive the discretization of the Fokker–
Planck [1] in theMathematical Model section of the main text with
coefficients given by [5].

We begin by considering the one-dimensional version of [1]
that we rewrite as

∂p
∂t

ðx;tÞ þ ∂F
∂x

ðx;tÞ ¼ 0; [S1]

where the flux, Fðx;tÞ is given by

Fðx;tÞ ¼ −D
�
∂p
∂x

ðx;tÞ þ pðx;tÞ
kBT

∂U
∂x

ðxÞ
�
: [S2]

Our discretization procedure is similar to that of (1), though as we
shall show we obtain different discretization coefficients. Let
piðtÞ ≈ pðih;tÞ for h a specified mesh width, and define Ui and
Fi similarly. At nonboundary points we assume a discretization
of the form

dpi
dt

ðtÞ þ 1

h
ðFiþ1∕2 − Fi−1∕2Þ ¼ 0; [S3]

where

Fiþ1∕2 ¼ αðUiþ1 − UiÞpi − βðUiþ1 − UiÞpiþ1: [S4]

Here αð·Þ and βð·Þ are functions to be determined. We may
rewrite this expression as

Fiþ1∕2 ¼ ½αðUiþ1 − UiÞ − βðUiþ1 − UiÞ�
�
pi þ piþ1

2

�

þ ½αðUiþ1 − UiÞ þ βðUiþ1 − UiÞ�
�
pi − piþ1

2

�
: [S5]

For the diffusive portion of the Fokker–Plank [S1] we would
like to recover the standard second-order discretization of the
Laplacian on R,

∂2p
∂x2

ðih;tÞ ≈ 1

h2
ðpiþ1 þ pi−1 − 2piÞ: [S6]

We therefore impose that

αðUiþ1 − UiÞ þ βðUiþ1 − UiÞ ¼
2D
h

: [S7]

With this choice, the second term in [S5] then reduces to the stan-
dard discretization of the diffusive flux, giving rise to the discrete
Laplacian [S6] in [S3]. It remains to choose α and β so that the
first term in [S5] represents a discretization of the flux arising
from drift induced by the potential UðxÞ.

Let peqi ¼ limt→∞piðtÞ denote the steady state value of piðtÞ,
and peqðxÞ the steady state value of pðx;tÞ. We assume that the
steady state probability the molecule is in voxel i is peqi h. As in
ref. 1, at thermodynamic equilibrium we expect the probability
density the molecule is at position x to be proportional to the
Boltzmann distribution

peqðxÞ ∝ e−UðxÞ∕kBT:

We therefore require that

peqiþ1 ¼ peqi eðUi−Uiþ1Þ∕kBT:

Moreover, at thermodynamic equilibrium detailed balance re-
quires that the probability flux between neighboring voxels should
balance, that is

Fiþ1∕2 ¼ 0.

Combining the last two equations we find that

αðUiþ1 − UiÞeðUiþ1−UiÞ∕kBT ¼ βðUiþ1 − UiÞ: [S8]

Solving Eqs. [S7] and [S8] for the functions α and β, we obtain
that

αðUiþ1 − UiÞ ¼
2D
h

1

eðUiþ1−UiÞ∕kBT þ 1
;

βðUiþ1 − UiÞ ¼
2D
h

1

eðUi−Uiþ1Þ∕kBT þ 1
:

By Taylor Series expanding the truncation error associated with
the discretization it can be seen that these expressions give a sec-
ond-order discretization in h. (Here we have ignored the issue of
discretizing boundary conditions.) The coefficients of pi, piþ1, and
pi−1 in [S3] determined by α and β then give the jump rates [6] for
voxels that are uncut by the nuclear membrane.

In three-dimensions, for voxels that are cut by the nuclear
membrane we follow the approach of ref. 2. The three-dimen-
sional equivalents of the flux [S4] are used in the finite-volume
embedded boundary method derived in ref. 2 to give the jump
rates [5].

3 Average Time to Locate a Target in One, Two, and Three Dimensions.
Consider the problem of finding a point, circular, or spherical
target in one, two, or three dimensions. Assume that binding
occurs immediately upon reaching the target’s boundary and
that, for simplicity, the domain in which the search takes place
is a concentric point, circle, or sphere to the target. If the target
has radius rb and the outer boundary has radius ro, the prob-
ability density for the diffusing particle to be at position x at
time t satisfies [1] with UðxÞ ¼ 0 and xb ¼ 0 (in the domain,
Ω ¼ fx∣ rb < jxj < rog⊥). In addition, the boundary conditions
remain [2] and [3]. If we assume the initial position of the particle
is uniformly distributed on the sphere (or circle or point), jxj ¼ r,
the solution to [1] is radially symmetric.

Denote by TdðrÞ the average exit time for the particle to locate
and bind to the target in d dimensions, given that the initial posi-
tion of the particle is jxj ¼ r. Then (see ref. 3),

1

rd−1
d
dr

�
rd−1

dTd

dr

�
¼ −

1

D
;
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with the boundary conditions that

TdðrbÞ ¼ 0;
dTd

dr
ðroÞ ¼ 0.

Solving these equations, we find that

TdðrÞ ¼
r2b − r2

2dD
þ rdo
dD

ðf dðrÞ − f dðrbÞÞ;
where

f dðrÞ ¼
8<
:

r; d ¼ 1;
lnðrÞ; d ¼ 2;
−1
r ; d ¼ 3.

By examining derivatives, it can be seen that T1ðrÞ < T2ðrÞ <
T3ðrÞ for rb < r ≤ ro. Moreover, if we assume that the particle
begins its search at r ¼ ro, and that the target radius is substan-
tially smaller than the domain radius (ro ≫ rb), we see that

TdðroÞ ∼

8>><
>>:

r2o
2D ; d ¼ 1;
r2o lnðroÞ

2D ; d ¼ 2;
r3o

3rbD
; d ¼ 3;

as ro → ∞. These scalings demonstrate that in a large domain it
will take significantly longer to find the (small) target as the
dimension is increased (particularly in three-dimensions).
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Movie S1. Shows the triangulated nuclear membrane surface reconstructed from the nuclear pore fluorescence data of ref. 1. Spatial units are in micro-
meters.

1 Schermelleh L, et al. (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structure illumination microscopy. Science 320:1332–1336.

Movie S1 (MOV)

Isaacson et al. www.pnas.org/cgi/doi/10.1073/pnas.1018821108 2 of 3

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1018821108/-/DCSupplemental/SM01.mov
http://www.pnas.org/cgi/doi/10.1073/pnas.1018821108


Movie S2. Shows a rotating volume rendering of the normalized DNA fluorescence intensity field, Ii. Note, the rendering is attenuated to allow the viewer to
see within the cell. As such, the field appears “clumpier” than it actually is. Spatial units are in micrometers.

Movie S2 (MOV)

Movie S3. Shows a typical trajectory of the protein searching for the binding site. Spatial units are in micrometers, and time is in seconds. The diffusion
constant of the protein was chosen to be 1 μm2∕s. Due to the large number of spatial jumps between voxels, the position of the protein is only shown every
.01 s after an initial jump of 1729.14 s. Note, the yellow sphere corresponds to the position of the binding site, whereas the brown sphere corresponds to the
diffusing protein. The size of the spheres was chosen solely for visualization purposes, and the volume rendering of the potential field was attenuated so that
the viewer could see into the volume. Ū ¼ 10kBT in the simulation.

Movie S3 (MOV)
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