Supporting Information

1. Design of the GG-H Array

Annotation of gene structure

To systematically examine the ‘annotated’ and experimentally ‘observed’ transcripts in terms of
exons and exon-exon junctions, annotated contents were collected from RefSeq, Ensembl, and
UCSC Known Genes based on human genome assembly of HG18, and complemented by
information of EBI's AEDB exons (literature-confirmed) and UCLA ASAP2 cassette exons.
ExonWalk program was then used to merge EST evidence and annotated contents together to
predict full-length isoforms, including alternative transcripts. This yielded a comprehensive
collection of 335,663 unique transcripts, consisting of a total of 370,295 unique exons. These
unique transcripts formed 35,123 transcript clusters (genes), and the set of unique exons
defined 249,240 exon clusters and 315,137 probe selection regions (PSRs). The set of 260,488
exon-exon junctions was defined based on observed junctions between unique exons, with

~32% constitutive and ~68% alternatively spliced junctions.

As an example, SLK gene has collectively nine input transcripts in RefSeq, Ensembl, UCSC KG
and Exonwalk as one transcript cluster. This transcript cluster includes 19 exon clusters and 23
PSRs, as well as totally 19 junctions including 16 constitutive and 3 alternatively spliced (Fig. S1).
A database of the annotations of gene structures is available on our supporting website at

http://gluegrantl.stanford.edu/~DIC/GGHarray/.
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Fig. S1. An example of the GG-H array annotation of genes (transcript clusters). A. Annotations of
transcripts, exons, and junctions of SLK gene from RefSeq, Ensembl, UCSC Known Genes, Exonwalk and
other database sources. B. Design of exon and junction probesets targeting the gene SLK. Shown are
probesets for nine selected exons and associated junctions.

Design of exon and junction probes

On average, ten probes were designed for each PSR and additional probes selected for
homologous regions and exons longer than 2KB, resulting in 119 unique probes on average for
each gene; four probes were designed for each exon-exon junction at positions -3, -1, +1, +3

relative to the splicing site (Fig. S2A).

To design probes for the exons, we considered three important factors: (1) probe performance
by thermodynamics calculation; (2) sequence uniqueness against the transcribed regions and
whenever possible, against the whole genome - a desirable probe is unique without any off-
target 17mer perfect matches and no up to three base off-target mismatches including
insertions/deletions; and (3) spreadness of the selected probes across the probe selection

region.
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The performance of a candidate probe was examined by a thermodynamic model proposed in
Mei et al. 2003 (1). The sequence uniqueness of a candidate probe was analyzed against both
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Fig. S2. Design of Exon and junction probes (A) and

SNP (B) deletions, should be minimized. An ideal

probe would have no mismatch targets at all. Third, if there were mismatches, the location of
its mismatch targets on the genome should not match the sequence of other selected probes
for the array. In addition, when multiple probes are to be designed for a probe selection region
(PSR), the distribution of probes should be evaluated to avoid the possibility of picking best

probes clustered in a small region.

For the GG-H array, one-half of the ten probes for each PSR were selected to maximize probe
thermodynamics and sequence uniqueness over the PSR region, and the other half were
selected to maximize the spreadness of the probes by picking the probe with best performance
and uniqueness for each 1/6 window of the PSR. Further, additional probes for PSR longer than

2kb were added at a pace of one probe every 100bp over 2KB. For homologous PSRs, additional
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probes were also added specifically targeting unique regions to help distinguish the expression

of homologous PSRs.

Probes for SNPs in coding and untranslated (UTR) regions

From the SNP126 database, we selected SNPs in exons or 3’, 5" UTR regions of genes meeting
the following criteria: (1) the SNP falls within any exon or UTR region defined as above; (2) the
SNP is validated; (3) the SNP sequence is mapped to a single location on the genome. This
resulted in 86,954 coding SNPs (cSNPs), including coding-synonymous SNPs — 23,825, coding-
nonsynonymous SNPs — 21,950, and UTR SNPs — 41,334. In addition, 2,828 DNA variations in

229 genes of drug metabolizing enzymes and transporters (DMET) were also identified.

Six probes were designed for each allele at -4, 0, and +4 positions relative to the SNP, except
that when the SNP position is less than 17 bases to one end of an exon, the probes were shifted
to the other side (Fig. S2B). Similar probe design strategy was utilized in commercial and
research Affymetrix GeneChips™ for SNP genotyping. These SNP probes will also allow us to

study allele specific expression in human samples.

In addition, DNA TAG probes (2) were included on the array allowing the flexibility to analyze up

to 70-80 thousand selected SNPs simultaneously using MIPS technique.

Survey of honcoding transcripts

We manually reviewed entries in several functional and regulatory ncRNA databases, including
SILVA rRNA database (http://www.arb-silva.de/), genomic tRNA database

(http://lowelab.ucsc.edu/GtRNAdb/), snoRNABase (http://www-snorna.biotoul.fr/), Signal

Page 4 of 19



Recognition Particle Database (http://psyche.uthct.edu/dbs/SRPDB/), Noncoding regulatory
RNA database (http://biobases.ibch.poznan.pl/ncRNA/), NONCODE
(http://www.bioinfo.org.cn/noncode/), RNAdb (http://jsm-research.imb.uq.edu.au/rnadb/),
Rfam (http://www.sanger.ac.uk/Software/Rfam/), fRNAdb (http://www.ncrna.org/), H-

Table S1. Survey of noncoding RNA species Invitational database (http://www.h-

on the GG-H Array.
invitational.jp/) as well as primary literature._730
(A) Known functional and regulatory

noncoding RNA selected for the array.

curated ncRNA species (f-ncRNA) were identified

Family Total

C/D box snoRNA 255 with experimental evidence to support their
snRNA 111

Disease related 104 . . ) .

H/ACA box snoRNA 94 biological functions (excluding rRNA and tRNA);
Y RNA 50

SRP_7SL RNA 35 these diverse functions include chromatin
Cajal body-specific ScaRNA 25

7SK RNA 13 architecture/epigenetic memory, DNA replication,
scAlu RNA 13

Imprinted 11 transcription, RNA splicing, editing, translation,
RNase MRP RNA 9

Vault RNA 3 protein transport and turnover, stress induced,
Telomerase RNA 4

RNase P RNA 1

drug resistance, and disease related (Table S1A).

(B) Unannotated transcribed unites (UTUs)
identified in all the 8 cytosol and 2 nuclear
conditions from (3).
Min Length 0 25 100* NCRNAs.
# bases 36Mb 36Mb 8.5Mb
*Selected for GG-H array

Ten probes were designed for each of these

From NATsDB (http://natsdb.cbi.pku.edu.cn/), we identified 6,025 antisense transcripts that

overlap with RefSeq genes, and ten probes were designed for each transcript. In addition, to
survey the potential antisense transcripts overlapping with the UTR region, we targeted the
antisense strands of 44,758 3’ and 5’ UTR regions of the RefSeq genes, and designed probes at
the density of one probe per 50 bp of UTR and with a minimum of six probes per region.
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We also analyzed the transcribed fragments of unknown functions (UTUs) from Affymetrix tiling
array data of polyA RNA isolations from eight cytosol and two nuclear conditions by Kapranov
et al., 2007 (3). Since there can be differences in transcribed RNAs between the nuclear region
and the cytosolic region, we identified those expressed in either all of the cytosol or nuclear
conditions. About 50 thousand of such transcripts having a minimum length of 100 bases, were
included as targets for the array (Table S1B). Since the tiling array experiment did not

distinguish the strand of the transcript, ten probes were designed for both strands of each UTU

(five probes per strand x two).

Control probes.

Quality control is important for microarray studies of clinical samples (4); therefore we included

Table S2. Various control probes included in the GG-H

in the array design several sets of

array. control probes (Table S2). First, the
Content Annotation # Probes
- ike-i Affymetrix Eukaryotic PolyA complete sets of controls probes for
Affymetrix polyA spike-ins RNA Control Kit - 4 species 1182 p p
Various controls for
. . A
Affymetrix default controls manufacturing and scanning 16570 the Affymetnx GeneCh|p5 are used
Affymetrix antigenomic 25 .
mers includi uali
GC bin background probes 16943 ncludin al ty controls onA
Affymetrix human non- Additional GC bin
transcribed sequences ("big 20282 . .
ae”) background probes spike-ins, default controls, and
Affymetrix "norm gene" 3012 probes targeting exons 13090
sequences and 10078 targeting introns additional controls) and background
Targeting 140 species of
ERCC probes 22358 . . .
P ERCC modeling (antigenome 25 mers, big
Antigenomic 22 mers GC bin background probes 8350
Mismatches to rRNA 0-4bp mismatches to rRNA 3182 GC and norm genes)' Second' we
Mismatches to PolyA spike- 0-4bp mismatch and ins/del .
Ins to Affymetrix polyA spike-ins 16314 included as controls prObes
Total 118271
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species (ERC) developed by the External RNA Control Consortium (ERCC) (5). These ERCs are
synthetic RNA to be added to a sample for the purpose of quality control of the assay, and have
been extensively prototyped and optimized for performance on microarray platforms. Third, we
also included both 22 mer probes of antigenomic sequences that are not homologous to human
genome, for background modeling of small RNA probes. Fourth, to better understand cross
hybridization of oligonucleotides on the array, additional probes were designed with 0 (perfect
match) to 4 base mismatches as well as insertion(s)/deletion(s) to the sequences of Affymetrix
poly-A spike-in controls. Finally, to monitor the ribosomal RNA signal in the amplified material,

we included probes with 0-4 base mismatches to rRNA, as the rRNA signal can be overwhelming.

Database of Array Annotation

The array annotation database is designed with the concept of entity-relation model such that

probe information (oligo property and array layout),

Transcript
Info

Exon Gene target information (transcript, gene, SNP, etc) and
Info Info
PR probe-to-target matching information are stored in
Info
Junction cSNP
ko e different tables. A summary of the schema is shown in

Fig. S3, where entities and relations are illustrated as

. SIRNA
Tiling Array
uTu Info

circles and double-headed arrows respectively. Since

Other

Info the contents of the multiple assays on the array are

Control
info Oligo
property

stored independently, our design allows each table to
Fig. S3. Summary of the schema of the
array annotation database. be updated individually without affecting the rest,
making it possible for each table to be synchronized to

its public databases regularly. Besides, in each target information table, new relations can be
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built to include new information from other databases. Further details of the design of the
array and the annotation database are available at

http://gluegrantl.stanford.edu/~DIC/GGHarray/.

2. Software for array processing and data analysis

We have developed a pipeline for array processing and data analysis, which includes: (1)
Quality control, low-level analysis and expression analysis using Affymetrix Power Tools (APT);
(2) High-level exploratory analysis using dChip; (3) Alternative splicing analysis using Junction
and Exon array Toolkits for Transcriptome Analysis (JETTA). The details of array processing and
data analysis, including supporting library files and annotation files, can be found at our

supporting website at http://gluegrantl.stanford.edu/~DIC/GGHarray/.

3. Protocol of sample processing for GG-H array

Sample processing protocol was developed to work efficiently with small amount of starting
material. Briefly, fifty nanogram aliquots of total cellular RNA were converted to double
stranded cDNA using custom-designed random primers containing the T7 polymerase promoter
region and conventional enzymatic steps. Subsequently, T7 RNA polymerase was used to
produce and amplify antisense cRNA, which was used as starting material to produce double
stranded labeled cDNA for hybridization. At this step, random primers were annealed to the
cRNA and the subsequent first and second strand synthesis reactions were performed using

dNTP’s with both thymine and uracil at a ratio of 4:1, utilizing conventional enzymatic steps.
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The double stranded cDNA was then fragmented by uracil DNA glycosylase and the digested
fragments were labeled with deoxynucleotidyl transferase (rTdT) and the biotin-conjugated
nucleotide analogue, DLR—1a. After the labeling reaction, the sample was hybridized
overnight. The array was washed, stained, and scanned using Affymetrix Fluidics Station FS450
and GeneChipScanner3000 7G. The detailed protocol is described in the protocol section of our

supporting website at http://gluegrantl.stanford.edu/~DIC/GGHarray/.

4. Comparison of array annotations with RNA sequencing data from multiple
tissues

Table S3. Mapping of RNA sequencing data from multiple tissues to the target
genomic regions of the array. Sequencing data of the 10 tissues were from Wang
et al. 2008. Overall, 94.5% of the uniquely mapped RNA-Seq reads across the 10
tissues fall in the target regions of GG-H, including 85% on exons and 7% on
junctions.

Tissue PSR JUNC UTU  as-ncRNA f-ncRNA  Total
Adipose 16.6M 1.4M 0.2M 77.0K 7.4K 18.2M
Brain 10.7M 0.6M 0.1M 29.4K 5.6K 11.5M
Breast 8.5M 0.8M 0.1M 46.9K 6.8K 9.4M
Colon 17.2M 1.3M 0.2M 72.4K 6.7K 18.8M
Heart 12.0M 0.7M 0.3M 30.4K 11K 13.0M
Liver 10.7M 0.9M 88.9K 42.6K 3.5K 11.8M
Lymph 13.0M 1.5M 0.2M 0.2M 6.3K 14.9M
Muscle 13.9M 1.3M 0.2M 51.8K 9.0K 15.4M
Testes 16.1M 1.6M 0.1M 85.2K 6.8K 18.0M
UHR (low cov.) 4.1M 0.5M 70.8K 29.1K 3.9K 4.6M
SUM 122.8M  10.7M  1.4M 0.7M 67.1K 136M
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5. RNA-Seq analysis
Two micrograms of the same liver and muscle

samples were used to perform four independent
repeats of MRNA processing and sequencing
analysis of each tissue utilizing the Illumina
Genome Analyzer Il. For each of the eight runs, on
average, 39 million reads were uniquely mapped to
exons and 3.9 million to junctions, which were

included in the further analysis.

Table S4. Number of reads from the
four independent repeats of RNA-Seq
for human liver and muscle tissues that
were uniquely mapped to the genome
or junction regions.

Run Liver Muscle
1 47.7M 47.4M
2 40.0M 47.6M
3 34.5M 39.7M
4 55.5M 53.6M

Total 177.7M  188.4M
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Fig. S4. The cumulative distribution of the coverage of sequencing reads on exons (left)
and genes (right) for 4M (red), 11M (green) and 39M (blue) uniquely mapped reads to
exons averaged over the four replicates. 4M and 11M reads are two sub-samplings of
39M. Y-axis represents the percentages of exons or genes detected that have less or
equal number of reads than specified by X-axis. The percentages of exons and genes
covered by no more than 20 reads are 90% and 56% respectively at 4M total reads, 80%
and 46% at 11M total reads, and 60% and 35% at 39M total reads.
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6. Evaluation of the array performance
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Fig. S5. Reproducibility of array measurements at probe level. A. log2 transformed raw signal of
probes targeting several adjacent exons of SLK gene (TC1000560) as visualized using cis-genome
browser. The red box indicates an exon (exon 15, chr10: 105,760,564 - 105,760,656) known to be
alternatively spliced between liver and muscle tissues. B. Clustering of the raw probe signal shows the
negative correlations between probes targeting the alternative exon and most of the probes
targeting other exons of the gene. Red bars on the top of the columns indicate probes targeting
known splicing exons and junctions, and black bars are the other probes.
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7. Reproducibility and dynamic range between the array and RNA-Seq
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Fig. S6. Comparison of GG-H and RNA-Seq. A. Coefficient of variation (CoV) of measured
expression levels of exons and genes between four replicates of the same muscle sample. Exons
and genes with zero reads in sequencing were excluded in the calculation. The trend of change in
CoV versus RPKM in sequencing was estimated by locally weighted scatterplot smoothing
(LOWESS). Shown are trend lines of CoV of array (red line) and mRNA sequencing (black line)
versus the abundance estimated by RPKM of mRNA sequencing. In 39 million uniquely mapped
reads to exons, large variation is observed in sequencing for genes lower than 0.5 RPKM and exons
lower than 5 RPKM. B. The larger dynamic range of mRNA-Seq comparing with array. Left, average
gene expression indices measured by RNA-Seq and GG-H array. Right, fold changes of gene

expression between liver and muscle samples measured by RNA-Seq and GG-H array.
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8. Analysis of the sources of variations in RNA-Seq

Variance across replicates was analyzed for GG-H and RNA-Seq. Genes or exons with zero reads
across all the four repeats in a tissue were excluded as these genes are potentially not
expressed in the tissue. Fig. S7A and C shows the median value of coefficients of variation
(CoVs) of genes and exons in RNA-Seq that have at least a certain number of reads (solid red
curves) and the median value of CoVs in GG-H array with the same set of genes (solid black

curves).

The total variance observed from four replicates of sequencing can be approximated as the sum
of sample preparation variance, and sampling variance of sequencing. The latter can be
approximately estimated as 1/sqrt (average number of reads per replicate) under the
assumption of Poisson sampling, which is 0.10 for 100 reads, 0.22 for 20 reads, 0.45 for 5 reads,
and 1 for 1 read. Therefore the sample preparation variance can be estimated as the difference
between total observed variance and the Poisson sampling variance (dashed red line in Fig. S7TA
and C). Significantly, on average more than half of the observed variance is estimated to come
from sample preparation for genes and exons with more than 4 reads, or roughly a minimum
abundance of 0.1 RPKM and 1 RPKM respectively. In addition, while the Poisson sampling
variation decreases when the total number of reads increases in an experiment, the variations

introduced by the sample preparation steps are unlikely to change.
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We set out to estimate the total number of reads required in RNA-Seq to achieve the same
overall median CoV as that of the array. For gene expression analysis, the overall median CoVs
of the array is 0.062, and in sequencing the subset of ~8,600 genes with a minimum of 185
reads (median of 927 reads) achieves the same median CoV (Fig. S7A and B). To bring the
median CoV of all the ~20,000 genes with at least one read (median of 114 reads) to the same
level of CoV while keeping the overall expression distribution requires ~290M (8.1 x 36M)
reads. A more conservative estimation, which only takes consideration of genes that have a
minimum estimated abundance of 0.1 RPKM, or roughly 4 reads per replicate for a gene with a
length of 1KB, resulted in ~150M reads. Similarly, 390M reads are estimated for exons (Fig. S7C
and D), and conservatively 200M reads for exons with minimum abundance of 1RPKM or

roughly 4 reads per replicate for an exon with a length of 100bp).
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Fig. S7. Coefficients of variation (CoVs) in GG-H and RNA-Seq. A. Median CoVs of the subset of
genes that has more than a minimum number of reads in sequencing. Black solid curve: the
median observed CoV (y-axis) in array of the subset of genes above a required minimum
number of reads (x-axis), red solid curve: the median observed CoV in sequencing, and red
dashed curve: estimated sample preparation CoV in sequencing. A black dot on the red solid
curve indicates that a minimum number of 210 reads is necessary in sequencing to achieve the
same median CoV as in the array. B. CoV distribution for all genes in array (black solid curve),
subset of genes with more than 185 reads in sequencing (red solid curve), and all genes in
sequencing (red dashed curve). C. Median CoVs for exons, and a minimum number of 35 reads
is required to achieve the same median CoV as in the array. D. CoV distribution for exon

expression.

Page 15 of 19

T
1000

density

density

12

10

CoV Disributions of Gene Expression

— array, all
— seq, >185 reads
- = seq,all
/h\
T T T - —\ _____ T
0.0 0.5 1.0 1.5 2.0

CoV Distributions of Exon Expression

— array, all
— seq, >40 reads
seq, all




9. Detection of differential expression in RNA-Seq

Since the sequencing platform ‘counts’ a transcript in an RNA sample according to its
abundance, the highest abundant species can be sampled hundreds of thousands or millions of
times before the low abundant species are sampled. Therefore, to be able to detect the
expression of exons and genes that are less abundant, it is critical to have sufficient number of
reads in sequencing. Consistent with previously published results (6), from 39M uniquely
mapped reads to exons, large variation is observed for genes lower than 0.5 RPKM and exons
lower than 5 RPKM (Fig. S6A), or fewer than roughly 20 reads for genes and exons. This is
expected, as the Poisson sampling in sequencing alone introduces CoV of 0.22 at 20 reads.
Similarly, from 11M and 4M uniquely mapped reads, large variation occurs for genes lower than

1.5 RPKM and 10 RPKM respectively.

Fig. S4 shows the cumulative distribution of the coverage of sequencing reads on genes and
exons for 39M uniquely mapped reads to exons averaged over the four replicates, as well as
sub-samplings at 4M and 11M reads. Genes or exons with zero reads across all the four repeats
were excluded. At 39M, 35% of the genes and 60% of the exons detected in a tissue are
covered by fewer than 20 reads. Sequencing with fewer reads will further reduce the coverage,
especially on low abundant species. For examples, sequencing of 11M uniquely mapped reads
or approximately one lane leads to 46% of the genes and 80% of the exons covered by <= 20
reads, and further reducing the sequencing reads to 4M will lead to 56% and 90% for <=20

reads, and 43% and 74% for <=5 reads.
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Similar observations can be made when comparing the detection of differentially expressed
genes by array and sequencing with 39M uniquely mapped reads to exons. As shown in Fig. S8,
while sequencing and array identify similar number of differentially expressed genes when the
gene coverage is high, for 35% of the genes and 60% of the exons detected by less than 20
reads in tissues (roughly 0.5 RPKM for genes and 5 RPKM for exons), sequencing identifies
much fewer as statistically significant. Deeper sequencing is required to detect the expression
of these genes and exons. Further, at least 46% of the genes and more than 80% of the exons

detected in a sample cannot be measured adequately with 11M or fewer uniquely mapped

reads.
Differentially Expressed Genes
= Array
7] o Sequencing
o
o |
o
<
(7]
V]
c
()]
[-14]
L
)
=0
23
£ N
>
c
oA -

0-20 20-100 100-1k 1k-10k 10k+
number of reads
Fig. S8. RNA-Seq detection of differential expressed genes. Comparison of the number of
differentially expressed genes (FDR<0.005) detected by GG-H array (black) and RNA-Seq (gray).
While sequencing and array detects similar number of genes when their coverage is above 20
reads, sequencing detects much fewer significant genes below 20 reads.
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10. Detection of other contents of human transcriptome
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Fig. S9. Detection of other contents of human transcriptome. A. Boxplots of the expression levels of
exons, junctions, ncRNAs, SNPs and UTUs. B. Hierarchical clustering of functional ncRNAs differentially
expressed between liver and muscle tissues. C/D box snoRNA family (each indicated by a black bar next
to the dendrogram) is over-expressed in muscle, and H/ACA box snoRNA (red bar) is over expressed in
liver.

11. De novo identification of junctions from mRNA sequencing data and
comparison with the array design.
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Fig. $10. De novo identification of junctions from mRNA sequencing data compared with the array
design. The x-axis is the log2 number of reads supporting a junction and the y-axis shows the
number of junctions supported. The black bars indicate the number of junctions in the array design
and the light gray bars indicate the number of new junctions. While GG-H junctions cover well
highly-expressed junctions identified by the de novo method, a total of 6,581 additional de novo
junctions supported by more than four reads (~1RPKM) were discovered and will be included in the
next revision of the array.
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M.D., Michael A. West, M.D., PhD., Bram Wispelwey, M.S.

The GG-H array can be ordered from Affymetrix as a custom array. For more information,
please contact the authors.
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