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S| Materials and Methods

Protein Expression and Purification. The coding sequence of
MyoX_MF (NCBI access number: NP_036466, residues 1503—
2047) was PCR amplified from a human brain cDNA library
and cloned into a pET32a vector. The coding sequences of
DCC_P3 (NCBI access number: NP_036973, residues 1409-1445)
and its N-terminal extension versions (residues 1321-1445 for
P2-P3 and 1370-1445 for the extended P3) was PCR amplified
from rat DCC gene. Its various mutants were generated by
PCR based site-directed mutagenesis. The coding sequences
for neogenin_P3 (residues 1397-1477) was PCR amplified from
mouse neogenin gene. For MyoX_MF/DCC_P3 fusion constructs,
DCC_P3 (residues 1409-1445) was fused to MyoX_MF at its N
terminus or C terminus by PCR. The C-terminal fusion protein
has two linker residues (Ser and His) between MyoX_MF and
DCC_P3 introduced by the cloning process. DCC fragments
and their various mutants were expressed as either Hisq-tagged
or GST-tagged proteins and purified using Ni**-nitrilotriacetic
acid agarose affinity chromatography or with GSH-Sepharose
column, followed by another step of gel filtration chromato-
graphy. Fusion proteins were expressed as Hisg-tagged proteins
and purified using Ni**-nitrilotriacetic acid agarose affinity
chromatography, followed by one more step of gel filtration chro-
matography.

Crystallography. Crystals of the MyoX MF/DCC_P3 fusion pro-
tein were obtained by hanging drop vapor diffusion method at
16 °C within 2 days. To set up a hanging drop, 1 pl of concentrated
protein solution (10 mg/ml) was mixed with 1 pl of crystallization
solution with approximately 8% PEG8000 and 10% glycerol in
0.1 M HEPES buffer (pH 7.5). To prepare heavy-atom derivatives,
crystals were soaked in the crystallization solution containing
1 mM KAu(CN), for two days. Before diffraction experiments,
crystals were soaked in crystallization solution containing addi-
tional 10% glycerol for cryoprotection. Several diffraction data-
sets of native crystal and its Au-derivative were collected at
100 K on a Rigaku RAXIS IV++ imaging-plate system with a
MicroMax-007 copper rotating-anode generator. The diffraction
data were processed and scaled using the MOSFLM and SCALA
in the CCP4 suite (1).

Four Au sites were found by SHELXD (2). The site refine-
ments and phase improvements were carried out by autoSHARP
(3). After manual backbone building, the phase was further im-
proved by RESOLVE (4) and then used as input for ARP/WARP
model building (5). The initial model was refined in Refmac5 (6)
against the 2.5-A native dataset. COOT (7) was used for model
rebuilding and adjustments. In the final stage, an additional TLS
refinement was performed in Refmac5 (8). The final model was
also used for the refinement of a 2.7-A dataset, which was col-
lected from a crystal in the same crystallization condition as
the 2.5-A one but containing 50 mM Nal.
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Structure and Sequence Analysis. The sequence alignment of the
MyTH4 domain combined both the primary sequences of the
domains as well as the structure of the MyoX MyTH4 structure
determined in this work. The consensus pattern of the alignment
sequences was characterized using WebLogo (9). All structure
figures were prepared by PyMOL (http://www.pymol.org/).

GST Pulldown Assay. The plasmid coding the GFP-tagged full-length
human MyoX expression was a gift from Wencheng Xiong. The
point or deletion mutations of MyoX: MyoX MF (residues
1503-2047), MyoX_MyTH4 (residues 1503-1703), MyoX_FERM
(residues 1696-2047), SH mutant (residues 1503-2047, S1718
H1719/AA), SHDEK mutant (residues 1503-2047, S1718 H1719
D1763 E1769 K1770/AAAAA) were cloned into pEGFP-C-3
vector for GFP-tagged protein expression. Direct interactions be-
tween DCC_P3 and various MyoX MyTH4-FERM mutants were
assayed in phosphate-buffered saline (pH 7.4). GST-DCC_P3 frag-
ment (approximately 0.6 nmol each) was first incubated for 30 min-
utes with GSH-Sepharose beads, and the GST-DCC_P3 loaded
beads washed twice each with 0.5 ml assay buffer. GFP-tagged
MyoX_MEF, MyoX_MyTH4, MyoX_FERM, MyoX_MF(SH/AA),
and MyoX MF(SHDEK/AAAAA) were transiently transfected in
HEK293T cells with lipofetamine PLUS kit (Invitrogen) and incu-
bated for 18 hr at 37 °C. Cells were lysed in 1% Triton X-100 lysis
buffer (150 mM NaCl, 10% glycerol, 50 mM HEPES pH?7.6,
1.5 mM MgCl,, 0.1 M NaF, 1 mM EGTA) on ice for 30 min and
centrifugated at 13,000 rpm for 30 min. Lysate was each pelleted
by the GST-DCC_P3 coated GSH-Sepharose beads. The pellets
were washed three times each with 0.5 ml of the assay buffer,
subsequently boiled with 15 pl of 2x SDS/PAGE sample buffer
and separated by SDS/PAGE. The GFP-tagged proteins were
visualized by immuno-detection using antiGFP antibody.

Isothermal Titration Calorimetry Assay. ITC measurements were
carried out on a VP-ITC calorimeter (Microcal) at 25°C. All
protein samples were in 50 mM Tris buffer, pH 7.5 containing
100 mM NacCl. The titration processes were performed by inject-
ing 10 pl aliquots of the Trx-tagged DCC_P3 or neogenin_P3
fragments into MyoX_MF proteins at time intervals of 3 minutes
to ensure that the titration peak returned to the baseline. The
titration data were analyzed using the program Origin7.0 from
Microcal and fitted using the one-site binding model.

Sedimentation Equilibrium. The MyoX MF/DCC_P3 fusion pro-
tein with different concentrations was analyzed on a Beckman
XL-I analytical ultracentrifuge under 11,000 rpm at 25 °C. The
partial specific volume of protein sample and the solvent density
were calculated using the program SEDNTERP (http://www.
rasmb.bbri.org/). The final sedimentation equilibrium data were
analyzed and fitted to a single-species model to get the molecular
mass using the XL-A/XL-I data analysis software provided by the
manufacture.

6. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures
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Fig. S1. The ITC analysis of the interactions between MyoX_MF and Neogenin_P3. The details of the experiments are identical to that in Fig. 1C.
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Fig. S2. Sedimentation equilibrium analysis of MyoX_MF/DCC_P3. The figure shows the sedimentation profiles of the MyoX_MF/DCC_P3 fusion protein
at three different concentrations. The rotor speed for the sedimentation experiment was 11,000 rom. The theoretical molecular weight was calculated from
its amino acid sequence.
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Fig. $3. Sequence alignment of MyoX_MF from different species. Residues that are absolutely and highly conserved are shown in red and yellow boxes,
respectively. The secondary structure elements are labeled above the alignment. The disordered regions in the structure are indicated by dashed lines.
The 36-residue deletion in the a3/ad-loop of the F2 lobe is indicated by a red line. The boundaries of the MyTH4 domain (residues 1503-1697) and the three
lobs of FERM are also indicated. The different segments in the MyTH4 domain are indicated by different color lines above the secondary structure elements
(also see Fig. S4). Residues in the F3 lobe that are involved in the binding to DCC_P3 are indicated by triangles. Residues forming interdomain sidechain-
sidechain and sidechain-mainchain hydrogen bonds in the MyTH4/F1 interface (see Fig. 6) are indicated by solid and open circles, respectively. Residues
involved in forming the positively charged surface and the hydrophobic pocket on the MyTH4 (Fig. 3C and Fig. S7) are indicated by squares and diamonds,

respectively.
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Fig. S4. Interactions between different segments within MyoX MyTH4. The MyTH4 domain is displayed from top (A) and bottom (B) in stereo view. The first
two helices, the a2/03 loop, the six-helix bundle, and the last helix («10) are colored in white, green, blue, and purple, respectively. Hydrogen bonds and salt
bridges are indicated by dashed lines.
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Fig. S5. Comparison of the structure of MyoX FERM with those of other FERM domains. (A) Ribbon representations of the FERM domains from Moesin, Talin,
Radixin, and FAK each with the similar orientation to that of MyoX FERM. Corresponding PDB ID code for each FERM domain is indicated in the parenthesis. The
available structure of the Talin FERM domain only contains F2 and F3 lobes. The bound peptides of the FERM domains are highlighted by red colored ribbons.
(B) Superposition of the individual lobes of the FERM domains. The figure reveals that the individual lobes of various FERM domains have similar conforma-
tions. The ap- and pp-grooves in the F3 lobe are indicated by a red oval and an arrow, respectively.
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Fig. S6. The hydrophobic interaction between MyoX-MF and DCC is shown as stereo structural view (A) and cartoon representation (B). The hydrophobic
interactions between the side chains of the ap-groove residues of MyoX FERM F3 lobe (green) and that of the DCC_P3 residues (red) were indicated by two-way

arrows in B.
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Fig.S7. The intermolecular MyTH4/DCC interaction induced by crystal packing. (A) A few residues in the N-terminal end of DCC_P3 forms a small a-helix, which
is stabilized by interacting with a symmetric related neighboring MyTH4 domain (gray color) in crystal. Tyr1416 in the small helix inserts its side chain into a
pocket on the MyTH4 domain. (B) Stereo view of enlarged molecular details of the MyTH4/DCC interaction. Two salt bridges sandwiching Tyr1416pcc are
indicated by dashed lines. (C and D) The difference in the crystal packing between MyTH4 and DCC_P3 in two different crystals with the same space group.
Electron densities around the N-terminal short a-helix in the 2.5-A structure (contoured at 15, C) and the corresponding region in the 2.7-A structure (contoured
at 0.8c, D) are shown by meshes. The figure demonstrates that the formation of the short N-terminal a-helix in the DCC_P3 is likely to be an artifact induced by

crystal packing.
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Fig. S8. Protein stabilities of MyoX_MF and its mutants expressed in HEK 293T cells. Human kidney 293T cells were cultured in DMEM supplemented with 10%
FBS. N-terminal GFP-tagged proteins were transiently transfected by lipofetamine reagents (Invitrogen). Cells were lysed in 1% Triton X-100 lysis buffer (50 mM
HEPES pH 7.5, 150 mM NacCl, 1.5 mM MgCl,, 0.1 mM NaF, 1 mM EDTA, 10% glycerol) on ice without any additional protease inhibitors for 30 min and cen-
trifuged at 13,000 rpm for 30 min. The supernatants were incubated at 4 °C for various lengths of time to evaluate the stabilities of various forms of soluble
MyoX_MF proteins expressed in HEK293T cells. In A, samples were collected right after centrifugation (0 hour) and after 16-hour incubation and then were
separated by SDS/PAGE. The expressed proteins were immuno-detected using antiGFP antibody. B shows a comparison of the sample stabilities of the wild-type
MyoX_MF and the MyoX-MF(SHDEK) mutant after incubating each of the cell lysate mixture for the indicated time periods.

Table S1. Statistics of data collection and model refinement

Data collection

Data sets Native Au-derivative

Space group P2,

Unit cell parameters A) a=285.2b=495c¢=928=1126
Resolution range (A) 50-2.5 (2.64-2.5)

No. of unique reflections 24981 (3589)

a=2871,b=497,¢c=915p=1159
50-3.0 (3.16-3.0)
14470 (2109)

Redundancy 3.7 3.7) 10.6 (10.3)
Redundancy 3.7 3.7) 10.6 (10.3)
I/o 16.8 (2.7) 16.9 (7.5)
Completeness (%) 99.5 (99.1) 100.0 (100.0)
Rinerge (%) * 7.3 (46.8) 10.8 (44.7)
Rmeas (%) ' 8.6 (54.7) 11.3 (47.0)

Structure refinement

Resolution (A)
Reryst / R—freeo (%) *
rmsd bonds (A) / angles (°)

30-2.5 (2.564-2.5)
20.3 (26.4)/25.9 (30.8)
0.008 / 1.15

Average B factor 50.6
No. of atoms

Protein atoms 4220
Water molecules 101
Other molecules 6
No. of reflections

Working set 23737
Test set 1243
Ramachandran plot regions $

Favored (%) 97.1
Allowed (%) 99.6
Outliner (%) 0.4

Numbers in parentheses represent the value for the highest resolution shell.
*Rmerge = X |li-Im|/ X I;, where [; is the intensity of the measured reflection and /,, is the mean intensity of all symmetry related
reflections.
"Rmeas 15 the multiplicity-weighted R factor (10).
tRcryst = Z HFobsHFca/c”/ Z |Fobs|r where Fobs and Fearc are observed and calculated structure factors. Riree = ZT”FobsHFcalc"/ZT‘Fobsll
where T is a test dataset of about 5% of the total reflections randomly chosen and set aside prior to refinement.
SDefined by MolProbity (11).
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