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Supplemental Methods

2',3'-0-p-Methoxybenzylideneuridine: To a solution of uridine (2.0 g, 8.2 mmol) in dry THF (30 mL),
ZnCl, (1.1 g, 8.2 mmol) and p-methoxybenzaldehyde (4 mL, 32.8 mmol) was added. The turbid mixture
was stirred for 2 days at room temperature and THF was removed. Product was precipitated by the
addition of diethyl ether (50 mL), which was filtered, washed with water (2 x 25 mL) and diethyl ether (2
x 25 mL). Crystallization from hot water containing a little ethanol provided 2',3'-O-p-
methoxybenzylideneuridine (2.1 g, 71%) as white solid. Mp: 205-206 °C (lit: 207-208 °C) (1). '"HNMR
(DMSO-dg, 500 MHz) (2): 6 11.40 (brs, 1H), 7.83 and 7.75 (2 x d, 1H, J = 8.0 Hz), 7.45 and 7.40 (2 x d,
2H, J=8.5Hz), 6.98 and 6.96 (2 x d, 2H J = 9.0 Hz), 6.06 and 5.92 (2 x s, 1H), 5.95 (2 x d, 1H, J = 3.0
Hz), 5.65 (2 x dd, 1H, J = 8.0, 2.0 Hz), 5.13 and 5.09 (2 x brs, 1H), 4.99 and 4.97 (2 x dd, 1H, J = 6.5,
2.5Hz),4.87 and 4.82 (2 x dd, 1H, J =6.5, 3.0 Hz), 4.24 and 4.15 (2 x dd, 1H, J = 4.5, 3.5 Hz), 3.78 and
3.77 (2 x s, 3H), 3.65 and 3.61 (2 x m, 2H).
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Uridine 5'-aldehyde: Trifluoroacetic acid (0.2 mL, 2.5 mmol) was added to an ice-cooled solution of
2',3'-O- p-methoxybenzylideneuridine (1.0 g, 2.76 mmol), N,N'-dicyclohexylcarbodiimide (3.1 g, 15
mmol), and pyridine (0.04 mL, 5 mmol) in anhydrous dimethyl sulfoxide (13 mL), and the resulting
mixture was stirred at room temperature for 16 h. Ethyl acetate (50 mL) was added to the reaction mixture
and precipitated N,N'-Dicyclohexylurea was filtered off while washing with another portion of ethyl
acetate (50 mL). Combined filtrates were washed with water (2 x 50 mL), dried (Na,SO,), and
concentrated to give crude 2',3'-O-p-methoxybenzylideneuridine 5'-aldehyde as a white solid. Without
further purification, the compound was dissolved in a solution of 90% trifluoroacetic acid (20 mL) and
stored at 37 °C for 16 h and then concentrated. An aqueous solution (30 mL) of the residue was washed
with chloroform (2 x 15 mL) and ethyl acetate (20 mL). Removal of the water afforded compound
uridine-5'-aladehyde (360 mg, 54% in two steps) as off-white foam. The compound is extremely
hygroscopic in nature and exists mostly in hydrated form (Fig. S7). ‘HNMR (D0, 500 MHz) (3): ¢ 7.88
(d, 1H, J = 8.0 Hz), 5.96 (d, 1H, J = 6.0 Hz), 5.88 (d, 1H, J = 8.0 Hz), 5.17 (d, 1H, J = 4.0 Hz), 4.37 (dd,
1H, J = 6.0, 5.5 Hz), 4.32-4.26 (1H, m), 4.00 (dd, 1H, J = 4.0, 3.5 Hz); *CNMR (D,0, 125 MHz): ¢
166.05, 151.74, 141.88, 102.44, 88.53, 86.17, 73.26, 69.60.
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Supplemental Figures
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Fig. S1. Reactions catalyzed by representative Fe(ll)- and a-KG-Dependent Dioxygenases. (A) The
reaction catalyzed by o-KG:taurine dioxygenase (TauD) depicting the proposed incorporation of an
oxygen atom from dioxygen into the aldehyde product. (B) The reaction catalyzed by AtsK, also
depicting the proposed incorporation of an oxygen atom from dioxygen into the aldehyde product.
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Fig. S2. Spectroscopic analysis of synthetic uridine-5'-aledehyde. (A) *H-NMR spectrum in D,O and
(B) *C-NMR spectrum.
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Fig. S3. Bioinformatics analysis of LipL. Sequence alignment of LipL with homologous enzymes from
the gene clusters involved in the biosynthesis of high-carbon nucleoside antibiotics including Cprz15
from the caprazamycin gene cluster, LpmM from the liposidomycin gene cluster, CapA from the A-
503083 gene cluster, and ORF7 from the A-500359 gene cluster. Conserved residues predicted to be

1 50
VSVLGRNVADRC PRRVRERDMQLMKSSYLELTA--RGHVTDLLKEDBTLE
———————————————————— MQLMKSSYDLPA--RGPVTDLLKEDETLD
———————————————————— MQLMKSSYEELTAPGRGYVTDLLKEDETLD
————————— MHRDNPVEEDSMROEOEDESDPRCTQPVDFAEY DAREOLEN
————————— MHRNDLVEEDSHQOHOBDESDPRCAQPVDFAEHGARNOVEIN
51 100
M T Y@ TS PVEAVS TAHARREEAATREDF GIEEENVE LB DR DE P
M T YL TOSPSATVS PADAESEMAATRADF GIEEENVE L IFEGRDTP
Ml T YEFINYTRSPSATVSAEDARREMAATRADL GIEDEN VR LI DRDA P
Tia= REFINY TMP--DP--GPPDATHISHAAA L RIMEVENIF A INR Y AETK
Tia= REFINY TMA - -EP--GPPDAKETANAQT L RINEDENMIE A IR AETO
101 vy 150
TVTAVTRKE----GSDEFVEHNGE 2GR T BIeili - Dife T < i 1 [I§{e s
IVTEVTRKE----Bs DERVEHRGE ARG T Bl Dle T i L ilF{e)s

IVTEVTRKA----Ds DERVEHIGA 2GS T BIeili - » e T < iy IF{ey~ o
DYSAAYSHIRGDTEDREECHSHT A CEAE BEHiD N ife DRI TiN{e~
DYSASFSDIRSDTKDOREGESHT 2 CEARE BleiliD ~ ife DiRIRVIR{ey < ~
151 200
RA-REERKFTL A GRVEERIRVER P ENADVE LR DT TGRSR T HGVDREAY
Y REErE A GRVEERIRTER P ENADVINR DT TG T HGVNREAY
AR CEErREFL A GRVDEIRA RS ENACTM LR DT T HCREER T HGVDREAY
AurEerm - NS LA~ BABRYE TR P ANIE ML S PRAJNEEEIMEFAT DVS TT
RurEe- i - §S A2 BABRYE RES ANNE AL S PRAJNEEEIEEAT DMSNT
201 250
EENAg £ GDEH Y ATERMGEGRVERY PADRAEQHEMDRYNIR F FRERRBDED
€32 £ 1.GDEH Y ATRMGEGRVERY PGDAORRAMDRYNIR H FRMRR[BDED
ER¥E = 1.GDEH Y ATERGOGOVEH[Y PKDRAE QK VDY A ¥ F TERREDED
€~ vDEAGN L LSRR TBN DT C TN - F G P PGEMCEYNIA FL.RSA SENER
ER¥ESVDEAGTLATRMTENDT C TN - FSREP PCEMR YA FFRKASENER
251 v 300
VRIDLLERAGOCHITNE A RER - N F TED POR PRI BERS@H TNAFRKK PS
VEIDLLEoAEGo TN A HER-NF TRDPOS PRLEVR SEH TNARKNTS
VRIDLLERAGOCHITENE VAR 1 F TRDSRHPRLBERS@HTDARKRTA
YREAVREA PEE ~ TN RISEER - P¥ERR PKARRHBVRERY A K VETCHP
YREAVREAAEE 2 N RISEER - ¥ ERs PCARRHMIRARY A EAFSCRP
301 322

involved in Fe(Il) binding are indicated (V).
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Fig. S4. Purification of recombinant dioxygenases from E. coli. (A) SDS-PAGE of purified Hise-LipL
(expected 38.2 kD). (B) SDS-PAGE of purified Hiss-EcTauD (expected 37.4 kD). The engineered N-
terminal Hisg-tag contributes approximately 5 kD to the native molecular mass.
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Fig. S5. Time course of dioxygenase activity by detection of sulfite. The maximal amount of product is
indicated by the dashed (---) line.
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Fig. S6 LC-MS analysis of the LipL-catalyzed reaction (A) The reaction components were detected by
total negative ion current and UV/Vis spectroscopy (inset). The asterisks (*) denotes an unidentified peak
with the similar retention time as UMP but distinct mass. (B) Mass spectrum for the peak at elution time t
= 3.8 min corresponding to uridine-5"-aldehyde. (C) Mass spectrum for authentic uridine-5'-aldehyde. (D)
Mass spectrum for the peak at elution time t = 5.6 min corresponding to succinate. (E) Mass spectrum of

authentic succinate. Ayg, absorbance at 260 nm.
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Fig. S7. LC-MS analysis of control reactions. (A) The reaction components were detected by total
negative ion current and UV/Vis spectroscopy (inset). (B) Mass spectrum for the peak at elution time t =
3.5 min corresponding to UMP. (C) Mass spectrum for the peak at elution time t = 4.2 min corresponding
to a-KG. Ay, absorbance at 260 nm.

S9



A
Succinyl-CoA Pyruvate Lactate
synthetase kinase dehydrogenase

Succinate ADP ﬁ» Pyruvate Lactate
CoA  Succinyl-CoA PEP ATP NADH NAD*
ATP Pi
v v Ll 1 T Ll
B |
1.0 4

(-) UMP, 20X LipL |

3
< 0_5_ -
(+) UMP, 1X LipL
0.0 — 1 11T
0 1 2 3 4 5
Time (min)

Fig. S8. Detection of succinate production using an enzyme coupled reaction. (A) Scheme depicting
the reactions catalyzed by the three additional enzymes that leads to oxidation of NADH for detection by
UV/Vis spectroscopy. (B) The LipL-catalyzed reaction with or without the addition of UMP. In the
absence of UMP, significantly more enzyme was required to detect activity. Asq, absorbance at 340 nm.
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Fig. S9. Requirement of dioxygen for LipL activity. The reaction was performed with LipL in an open
atmosphere (1), a saturated O, atmosphere (1), or saturated N, atmosphere (I11). In all cases, the reaction
mixture was degassed with argon prior to the addition of enzyme. Aq, absorbance at 260 nm.
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Fig. S10. Requirements for LipL activity. Analysis of the LipL reaction using UMP as the prime
substrate with the omission of enzyme (1), o-ketoglutarate (1), ferrous iron (111), or ascorbate (1V), and
the reaction containing all of the components without (V) or with EDTA (VI). UMP (©0) and uridine-5'-
aldehyde (®); Az, absorbance at 260 nm.
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Fig. S11. Activity of LipL with uridine nucleoside and nucleotides. The LipL-catalyzed reaction was
performed with (A) uridine, (B) UMP, or (C) UDP. Control reactions were run without enzyme. Ay,
absorbance at 260 nm.

S13



1 Fedl
100- .

[=2] [e.]
2.8

5

Fe(lll

Relative Activity (%)
3

No' Mn l Co Ni Cu Zn

Mg Ca
|

(=]
L

Metal

1004 Fe(ll)

80+

60+

Relative Activity (%)

NERENEE-A NN

125
100+
751

50+

Relative Activity (%)

500 750

[Zn**] (uM)

0 250

1000

Fig. S12. Effect of metals on LipL activity. (A) The indicated metal substituted Fe(ll) using the standard
reaction conditions. (B) The indicated metal was included with equimolar concentrations of Fe(ll) using
the standard reaction conditions. (C) Activity with the addition of Zn** using the optimized reaction

conditions for each enzyme.
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Fig. S13. Kinetic analysis of LipL using HPLC to detect product formation. (A) Single-substrate
kinetic analysis using variable o-KG (9 uM-315 uM), near saturating UMP (2 mM), and 200 nM LipL.
The extracted kinetic constants are Ky, = 12 + 3 pM and k., = 84 + 18 min™. (B) Single-substrate kinetic
analysis using variable UMP (25 uM-800 uM), near saturating a.-KG (1 mM), and 200 nM LipL. The
extracted kinetic constants are K, =28 £ 6 uM and K, = 81 + 20 min™ with respect to UMP. Data
represent the average of two independent replicates obtained using end point assays under initial velocity
conditions; S.E. was < 22% in all cases.
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Fig. S14. LC-MS analysis of LipL activity without UMP. (A) The reaction components were detected
by total negative ion current. (B) Mass spectrum for the peak at elution time t = 5.6 min corresponding to
succinate and elution time t = 4.2 min corresponding to a-KG.
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Fig. S15. Isotopic enrichment experiments. (A) Mass spectrum for the peak at elution time t = 5.6 min
corresponding to succinate from a reaction performed in **0,, (B) Mass spectrum for the peak at elution
time t = 5.6 min corresponding to succinate from a reaction performed in H,'*0_(C) Mass spectrum for
the peak at elution time t = 5.6 min corresponding to succinate from a reaction performed in H,**0
without UMP. (D) Mass spectrum for the peak at elution time t = 4.2 min corresponding to remaining o.-
KG from a reaction performed in H,**0 without UMP.
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Fig. S16. Potential mechanism for LipL, an Fe(ll)-dependent a—KG:UMP dioxygenase. In this
mechanism, Fe(Il) bind to form the holo-protein A, followed by an ordered sequential binding of a-KG
and UMP, the latter of which leads to a substantial conformational change permitting dioxygen binding at
the mononuclear center to form an Fe(l11)-superoxo species B. Following the formation of B, the reaction
proceeds with attack of the distal (uncoordinated) oxygen on the a-keto group of the bidentate-
coordinated a-KG, which results in decarboxylation and O-O bond cleavage to form succinate, CO,, and
a high spin Fe(IV)-oxo intermediate C. Subsequently, the C-5" hydrogen of UMP is abstracted to form a
carbon-centered radical and a Fe(l11)-hydroxo center D, and the proximity of these two species results in
oxygen rebound to yield 5'-hydroxy-5'-phosphouridine and a distorted Fe(ll) center E, the former of
which undergoes spontaneous phosphate elimination to yield the uridine-5'-aldehyde. Amino acids are
numbered using the LipL sequence and are depicted as coordinating the iron based on the orientation
within the TauD structure.
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Fig. S17. Hypothetical partial mechanism for LipL, an Fe(l1)-dependent a—KG:UMP dioxygenase.
In this reaction mechanism starting from intermediate C, both the C-5' and C-4' hydrogens are removed in

a desaturase-type mechanism, which is followed by dephosphorylation and tautomerization to yield the
final product. Amino acids are numbered using the LipL sequence and are depicted as coordinating the

iron based on the orientation within the TauD structure.
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Fig. S18. High-carbon nucleosides whose biosynthesis may include an activity similar to LipL.
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