SUPPLEMENTAL FIGURE LEGENDS

Figure S1. (A) ER stress sensors, IRE1 α , sXBP1 and p-PERK are not different in various brain regions of ATF6a KO mice under physiological conditions in vivo. The tissue lysates of 3 month-aged ATF6 α KO mice and ATF6 α WT littermate were subjected to western blot analysis for detection of IRE1 α , sXBP1, p-PERK and β -actin (n= 5). Each protein level was quantified using optical density and estimated relative to β -actin protein level. Abbreviation: CTX, cerebral cortex; BS, brainstem; HIP, hippocampus; STR, striatum; MB, midbrain; CR, cerebellum; OB, olfactory bulb; T, thalamus; SC, spinal cord; 3M, 3 months aged group. Asterisk indicates statistical significance (*p<0.05, ** \hat{p} <0.01). Each bar denotes the mean \pm S.D. (**B**) Comparative analysis of levels of protein involved in synaptic secretion and vesicular transport between ATF6 α WT (+/+) and KO (-/-) mice. Protein levels of VMAT2, Rab1A and Syntaxin were significantly increased in ATF6a KO mice as compared with those of WT mice. Protein levels in the striatum of 12 month-aged ATF6a WT and KO mice were measured by quantitative immunoblotting using image-J densitometry and the values relative to β -actin were compared with those of WT mice. (Each group, n=7-10) Abbreviation: VMAT2, Vesicular Monoamine Transporter 2. (C-E) ATF6a is not essential for the development and the survival of dopaminergic neurons. 12 month-o d male ATF6 α KO (-/-) mice and ATF6α WT (+/+) littermates were used for comparative analysis. Each bar denotes the mean \pm S.D. (C) Representative TH staining of coronal midbrain sections of ATF6 α KO and ATF6 α WT mice. Scale bar indicates 50 μ m. (**D**) The number of TH-positive neurons in the SNc of ATF6 α KO and ATF6 α WT mice (n= 5 for each group). (E) Immunoblot analysis of the striatum tissue lysates of ATF6α KO and ATF6α WT mice for detection of TH and DAT (n= 9-10). Each protein level was quantified using optical density. Abbreviation: TH, Tyrosine hydroxylase; DAT, dopamine transporter.

Figure S2. (A) Hydrogen peroxide (H₂O₂)–induced oxidative stress induced phosphorylation of p38MAPK and cleavage of pATF6 α (P) to produce pATF6 α (N). Immunoblot of cell lysates from ATF6 α WT (+/+) and ATF6 α KO (-/-) mice embryonic fibroblasts (MEFs) treated with 50 μ M H₂O₂ for 60, 120, 240 mins using antibodies against ATF6 α , p38MAPK, phosphorylated p38MAPK (p-p38MAPK) and β -actin. 5 μ M SB203585 was added into the medium prior to H₂O₂ treatment as indicated. (B) There was no aggregate stained with 1% Thioflavin T (dye for amyloid) and no accumulated material immunostained with anti- α -synuclein antibody or anti-phosphorylated α -synuclein (P- α -synuclein) antibody. (C) Representative images of primary co-cultured dopaminergic neurons derived from the midbrain and the striatum of the embryonic day 15 ATF6 α WT/KO mice. Primary cultured cells were immunostained with DAPI, anti-Tuj1 (neuronal marker) antibody and anti-TH antibody. Scale bars indicate 100 μ m. Abbreviation: BF, bright-field image; TH, Tyrosine hydroxylase.

Figure S3. (**A-C**) MPP⁺ induces release of N-terminal ATF6 α fragment with subsequent translocation into the nucleus and colocalization with phosphorylated p38MAPK. SH-SY5Y cells were transfected with p38MAPK and pGFP-ATF6 α (P) for 24 hours and then immunostained with anti-p38MAPK antibody (**A**, red) and DAPI (**A**, blue). After transfection SH-SY5Y cells were treated with 1mM MPP⁺ for 24 hours, fixed and stained with anti-p38MAPK antibody (**B**, red) or anti-phosphorylated p38MAPK (p-p38MAPK) antibody (**C**, red) and DAPI (blue). Scale bars indicate 10 µm. (**D**-G) Hydrogen peroxide (H₂O₂) induces release of N-terminal ATF6 α fragment with subsequent translocation into the nucleus and colocalization with phosphorylated p38MAPK. HEK293T cells were transfected with p38MAPK and pGFP-ATF6 α (P) for 24 hours and then immunostained with anti-p38MAPK antibody (**D**, red) or anti-p-p38MAPK antibody (**E**, red). After transfection HEK293T cells were treated with 50 µM H₂O₂ for 60 mins, fixed and stained with anti-p38MAPK antibody (**F**, red) or anti-p-p38MAPK antibody (**G**, red). Scale bars indicate 10 µm. (**H**) H₂O₂ treatment

enhances the binding of N-terminal fragment of ATF6α with p-p38MAPK. HEK293T cells were transfected with 2 μ g flag-p38MAPK vector and 2 μ g N-terminal fragment of ATF6 α (1-373) vector; they were then cultured with or without 50 μ M H₂O₂ in the presence or absence of 5 μ M SB203585 for 60 mins. Each lysates were immunoprecipitated with anti-flag antibody (Upper panel) or anti-p-p38MAPK antibody (Middle panel) and immunoblotted with an anti-ATF6a antibody. Western blot analysis of 10 % input lysates were performed with anti-ATF 6α , p-p38MAPK, p38MAPK and β -actin antibodies (Lower panels). Abbreviation: IP, immunoprecipitation; IB, immunoblotting; SB, SB203585; N-ATF6a, N-terminal fragment of ATF6α (1-373). (I and J) p38MAPK phosphorylation enhances the transcriptional activity of ATF6α. (I) Vectors(1 μg ERSE reporter carrying BiP promoter-Luciferase vector, 100ng pRL-SV40 vector and 1 µg control vector or p38MAPK vector) were mixed with 1 µg Mock(pcDNA-3.1(+)) or N-terminal fragment $(1-373)(N-ATF6\alpha)$ or dominant-negative form (171-373)(ATF6a-DN) of ATF6a vector for transfection of HEK293T cells in a 6-well dish for 48 h. HEK293T cells were challenged with or without 50 μ M H₂O₂ for 1 h and lysed for analysis of BiP reporter expression. Each bar denotes the mean \pm S.D. (J) Vectors (1 µg 5×UPRE reporter vector, 100ng pRL-SV40 vector and 1 µg control vector or p38MAPK vector) were mixed with 1 μ g Mock (pcDNA-3.1(+)) or N-ATF6 α or ATF6 α -DN vector for transfection of HEK293T cells in a 6-well dish for 48 h. 293T cells were challenged with or without 50 µM H₂O₂ for 1 h and lysed for analysis of UPRE reporter expression.

Supplemental Figure 1

Supplemental Figure 3

Supplemental Table 1

Primer for	Sequences
BiP forward	5'-ACTTGGAATGACCCTACGGTG-3'
BiP reverse	5'-TGCTTGTCGCTGGGCATC-3'
ATF6α forward	5'-TTATCAGCATACAGCCTGCG-3'
ATF6α reverse	5'- CTTGGGACTTTGAGCCTCTG-3'
GRP94 forward	5'- CTGGGTCAAGCAGAAAGGAG-3'
GRP94 reverse	5'-TGCCAGACCATCCATACTGA-3'
p58 ^{IPK} forward	5'-GAAGCATCTTGAATTGGGGA-3'
p58 ^{IPK} reverse	5'-CAAGCTTCCCTTGTTTGAGC-3'
Derlin-3 forward	5'-ATGCTGGAGGAGGGTTCTTT-3'
Derlin-3 reverse	5'-AGTGCTGTCAGAGTGGGCTT-3'
GAPDH forward	5'-CCCCACTAACATCAAATGGG-3'
GAPDH reverse	5'-CCATCCACAGTCTTCTGGGT-3'
endogenous human BiP promoter forward	5'-AGTGACGTTTATTGCGGAGG-3'
endogenous human BiP promoter reverse	5'-TTATATACCCTCCCCAGCC-3'
endogenous human GAPDH forward	5'-CTTCGTATGACTGGGGGTGT-3'
endogenous human GAPDH reverse	5'-TTGAGGTCAATGAAGGGGTC-3'
endogenous human Ngn2 promoter forward	5'-CAGGACTGACAGGAGGAGGA-3'
endogenous human Ngn2 promoter reverse	5'- GTCTCGTGTGTGTTGTGGTGGT-3'

The List of the Primers and the Sequences