Table W1. Primer Pairs of TGF- β Superfamily Signaling Molecules.

	Sequence	Annealing Temperature (°C)	Extension Time	Cycles	Amplicon Size (bp)	Reference
BMP-7	For 3' CACGCTACCACCATCGAGAG 5' Rev 3' TTCATGTAGGAGTTCAGAGGGA 5'	58	41 sec	35	669	PerlPrimer v1.1.10 Software
Alk-2	For 3' CTCCGAGTACCCCAGTGA 5'	55	30 sec	35	457	PerlPrimer v1.1.10 Software
Alk-3	For 3' CAGAATCTGGATAGGATAGCTATGGC 5'	60	30 sec	35	418	PerlPrimer v1.1.10 Software
Alk-6	For 3' GCGAAGTGCAGGAAAAT 5'	55	30 sec	35	502	PerlPrimer v1.1.10 Software
BMPRII	For 3' CATTGGAGATCCCCAAGA 5'	50	30 sec	35	382	PerlPrimer v1.1.10 Software
ActrIIA	For 3' CTTCAAATCCAGTTACACCT 5'	53	30 sec	35	490	PerlPrimer v1.1.10 Software
ActrIIB	For 3' GATGACTTCAACTGCTACGA 5'	55	37 sec	35	612	PerlPrimer v1.1.10 Software
SMAD-1	For 3' CATCATCCCTACCACCATTAAGAG 5'	56	40 sec	35	534	PerlPrimer v1.1.10 Software
SMAD-5	For 3' CTAATACCATCACTATAAGAG 5'	55	1 min	35	847	PerlPrimer v1.1.10 Software
SMAD-8	For 3' CTCCCTCTTCCCTTCACCA 5'	57	1 min	35	871	PerlPrimer v1.1.10 Software
SMAD-4	For 3' CACCETTICAAACCATCCAGCA 5'	56	40 sec	35	665	PerlPrimer v1.1.10 Software
TGF-β1	For 3' IGGCGATACCTCAGCAACC 5'	59	25 sec	35	405	Int J Cancer 2000;89:251-258
TGF-β2	For 3' ATCCCGCCCACTTTCTACAGAC 5'	61	35 sec	35	565	Int J Cancer 2000;89:251-258
TGF-β3	For 3' TACTATGCCAACGCATCTCTCC 5'	55	32 sec	35	522	Int J Cancer 2000;89:251-258
Alk-5	For 3' ACGGCGTTACAGTGTTTCTG 5'	57	22 sec	35	358	Int J Cancer 2000;89:251–258
Alk-1	For 3' CTCAGACACGACAACATCCT 5'	57	31 sec	35	513	PerlPrimer v1.1.10 Software
Tβ-RII	For 3' AGCAACTGCAGCATCACCTC 5'	58	42 sec	35	688	Int J Cancer 2000;89:251–258
SMAD-2	For 3' ATCCTAACAGAACTTCCCCAC 5'	57	31 sec	35	489	Int J Cancer 2000;89:251-258
SMAD-3	For 3' AGAAGACGGGGCAGCTGGAC 5'	57	31 sec	35	511	Int J Cancer 2000;89:251-258
SMAD-6	For 3' CACATCCAGACGACAGCA 5'	55	30 sec	40	386	Biochem Biophys Res Commun
SMAD-7	For 3' GCCCTCTCTGGATATCTTCT 5'	55	30 sec	35	320	Biochem Biophys Res Commun
β-actin	For 3' ATCTGGCACCACACCTTCTACAATGAGCTGCG 5' Rev 3' CGTCATACTCCTGCTTGCTGATCCACATCTGC 5'	67	1 min	25	838	PerlPrimer v1.1.10 Software

Figure W1. Immunohistochemical analysis of Ki67 in experimental gliomas. Mice brains were dissected 10 days after starting BMP-7 (100 μ g/kg per day) or control buffer treatment (± BMP-7). Sections (4 μ m) of paraffin-embedded tissue were subjected to immunohistochemical analysis of Ki67 expression. (A) Representative images of mice brain sections are presented at 200× magnification (bars = 50 μ m). (B) Ki67-positive cells were counted per visual field (VF); means were calculated and plotted per set of animal ($n = 3, P \le .05$).

Figure W2. TUNEL analysis in experimental gliomas. Mice brains were dissected 10 days after starting BMP-7 ($100 \mu g/kg$ per day) or control buffer treatment (\pm BMP-7). Sections (4 μ m) of paraffin-embedded tissue were subjected to immunohistochemical analysis of TUNEL-positive cells. (A) Representative images of mice brain sections are presented at $200 \times$ magnification (bars = 50μ m). Negative and positive control sections (DNase I–treated) are included. (B) TUNEL-positive cells were counted per visual field (VF); means were calculated and plotted per set of animals (n = 3, P = .78).

Figure W3. Numbers of viable and dead cells in the presence or absence of BMP-7. Viable and dead cells were monitored after Trypan blue exclusion and counted at several time points before (0 hour) and after (24, 48, 72, and 96 hours) BMP-7 (500 ng/ml) or control buffer treatment. All values are presented as the mean \pm SD of three independent experiments. *P* values are depicted in the figure. (A) Numbers of dead cells in the absence or presence of BMP-7. (B) Fractions of viable and dead cells in the presence or absence of BMP-7.

Figure W4. Hematoxylin and eosin staining of experimental gliomas. Mice brains were dissected 10 days after starting BMP-7 (100 μ g/kg per day) or control buffer treatment (± BMP-7). Sections (4 μ m) of paraffin-embedded tissue were subjected to hematoxylin and eosin staining. Representative images of mice brain sections are presented at 12.5× and 200× magnifications (bars = 1000 μ m and 100 μ m, respectively).