Oligo	Sequence	Purpose	
1	5'-GAG AAA TTA ACT ATG GCG GCG GCG TGT GAA ATG AAA CGC ACC ACA CTG-3'	Encodes DKD(2-4)- AAA mutation.	
2	5'-GAG AAA TTA ACT ATG GAC GCG GCG GCG GAA ATG AAA CGC ACC ACA CTG-3'	Encodes KDC(3-5)- AAA mutation.	
3	5'-G GAG AAA TTA ACT ATG GAC AAG GCG GCG GCG ATG AAA CGC ACC ACA CTG G-3'	Encodes DCE(4-6)- AAA mutation.	
4	5'-G GAG AAA TTA ACT ATG GAC AAG GAT GCG GCG GCG AAA CGC ACC ACA CTG G-3'	Encodes CEM(5-7)- AAA mutation.	
5	5'-G GAG 5'-GG CTA GCC GCG GCG GCG TGG CTT CTG GCC CAT G-3'	Encodes VKE(164- 166)-AAA mutation.	
6	5'-GGA GGG CTA GCC GTG GCG GCG GCG CTT CTG GCC CAT G-3'	Encodes KEW(165- 167)-AAA mutation.	
7	5'-G GGC 5'-TA GCC GTG AAG GCG GCG GCG CTG GCC CAT GAA GG-3'	Encodes EWL to AAA mutation.	
8	5'-TA GCC GTG AAG GAA GCG GCG GCG GCC CAT GAA GGC CAC CG-3'	Encodes WLL(167-169)-AAA mutation.	
9	5'-AGT CAG TCA GTC AGT CAG TCA GTC AG-3'	Binding substrate.	
10	5'-CTG ACT GAC TGA CTG ACT GAC TGA CT-3'	Binding substrate.	

AGT Protein	Algorithm	H(tot) ^b	S(tot) ^b	Turn ^b	UO ^b
Wild-type	Selcon 3	20	30	20	29
	Continll	23	25	19	32
KDC(3-5)-AAA	Selcon 3	18	30	19	27
	Continll	22	26	19	33
DCE(4-6)-AAA	Selcon 3	с	с	c	c
	Continll	5.7	39	21	35
CEM(5-7)-AAA	Selcon 3	19.2	25.5	18	25
	Continll	19.5	29	19	32
VKE(164-166)-AAA	Selcon 3	22	30	19	28
	Continll	23	25	20	32
KEW(165-167)-AAA	Selcon 3	13	36	17	23
	Continll	16.5	27.4	18	38
EWL(166-168)-AAA	Selcon 3	11	40	18	26
	Continll	17	29	18	36

a. Values obtained using Contin/LL and Selcon3 algorithms implemented in the CDpro program, using the SDP48 basis set (22,23).

b. Percent of residues in each conformation. H(tot) = H(R) + H(D), where H(R) is the percent in "regular" helix and H(D) is the percent in "distorted" helix estimated by the program. S(tot) = S(R) + S(D), where S(R) is the percent in "regular" sheet and S(D) is the percent in "distorted" sheet estimated by the program. Turn refers to the fraction in b-turn conformation; UO is the percent that cannot be assigned other major secondary structures. The normalized mean root square derivation between calculated and experimental spectra was in the range of 2.3-5.5 %.

c. Calculation failed to converge.

Adams, C.A. and Fried, M.G. **Mutations That Probe The Cooperative Assembly Of AGT-DNA Complexes**

Figure S1

Figure S1. SDS-polyacrylamide gel electrophoresis of representative AGT preparations. SDS-PAGE gels (15% acrylamide) were prepared and run as described (29) and stained with coomassie blue R-250. Lanes 1 and 4 contain molecular weight standards. Lane 2 contains wild-type AGT (20µg). Lane 3 contains AGT-mutant KDC(3-5)-AAA (35µg). Molecular weights of standards (in units of KDa) are given in the margin.

Figure S2

Figure S2. Circular dichroism spectra of wild-type and mutant AGT proteins. Spectra were obtained at 4°C, using a cell with a path length of 0.02 cm. Samples contained wild-type or mutant protein at concentrations of ~0.19 mg/ml (~9 μ M) dissolved in 50 mM sodium phosphate (pH 7.5 at 4°C). Each spectrum is the average of twenty consecutive scans.