Supplemental Figure 1. The phenotypes of *flc-3*, wild type (Col-0), *skb1-1 flc-3* and *skb1-1* grown in soil for 35 days under long day

Supplemental Figure 2. The sensitivity of the wild type (Col-0) and *skb1* mutants to salt stress. (A) *skb1-1* and *skb1-2* mutants were all hypersensitive to salt stress. Four-day-old seedlings were transferred from MS medium alone to MS medium with 0, 120 or 160 mM NaCl. Photographs were taken at 20 days (MS) or 40 days (120 and 160 mM NaCl) after seedling transfer to the treatment medium. (B) Three-week-old Col-0 and *skb1-1* plants were grown in soil without NaCl (left) or with 300 mM NaCl every three days for two additional weeks (right). The survival rate (bottom) was measured at the end of NaCl treatment and is the means \pm SE of two independent experimental results (n=40).

Supplemental Figure 3. Overexpression of SKB1 slightly increases the tolerance to salt stress

Supplemental Figure 3. Overexpression of SKB1 in a Col-0 background slightly increases tolerance to salt stress. (A)Four-day-old seedlings were transferred from MS medium to MS medium with 0 or 120 mM NaCl and grown horizontally for 30 days. Representative plants were selected for photographs and laid vertically to observe root length. The red line indicate the root length of Col-0 and 35S:SKB1 Col-0. (B) More than 20 roots were measured to score the root length shown in A. The quantitative results represent the mean \pm SE of two independent experiment results.

Supplemental Data. Zhang et al. (2011). Plant Cell 10.1105/tpc.110.081356

Supplemental Figure 4. The phenotypes of flowering time-controlling gene mutants grown on medium with salt.

Supplemental Figure 4. The phenotypes of flowering time-controlling gene mutants, including *skb1-1, fca, fve, fld4, flk, fy, ld-1, prmt4a prmt4b, prmt10* and *sdg8*, grown on MS medium with salt. Four-day-old seedlings were transferred from MS medium to MS medium with 0 or 160 mM NaCl. Photographs were taken 30 days after seedling transfer to the treatment medium.

Supplemental Figure 5. Growth of plants on MS medium containing different concentrations of ABA.

Supplemental Figure 5. Growth of Col-0, *skb1-1*, 35S:SKB1 Col-0 and 35S:SKB1 *skb1-1* on MS medium containing 0, 0.5, 1 or 2 μ M ABA. Seeds were germinated for 9 days on MS medium with or without ABA, and representative plants are shown.

Supplemental Fighter Gatanzin Sky Bl an (20114) RB an e Cantibodios (peulomensed down chromatin DNA in skb1-1 mutant.

Supplemental Figure 6. Anti-SKB1 and -H4R3sme2 antibodies could not pull down chromatin DNA in *skb1-1* mutant. In the upper *RD29B* and *RD29A* genes structure, white boxes represent exons or 5° or 3° untranslated regins, and black lines reprent introns.

Supplemental Figure 7. Sequence alignment of LSM4 homologs in Arabidopsis, human, mouse, and yeast.

AtLSM4	MLPL <mark>SLLKTAQGHPMLVELKNGETYNGHLVNCDTW</mark> MNI HLREVI CTSKDGDRFWRMPECYI RGNTI KYLRVPDEVI DKVQ	80
hLSM4	MLPL <mark>SLLKTAQNHPMLVELKNGETYNGHLVSCDNWMNI NLREVI CTSRDGDKFWRMPECYI RGSTI KYLRI PDEI I DMMK</mark>	80
mLSM4	MLPL <mark>SLLKTAQNHPMLVELKNGETYNGHLVSCDNWMNI NLREVI CTSRDGDKFWRM</mark> PECYI RGSTI KYLRI PDEI I DMVR	80
SpLSM4	MLPLTLLNAT <mark>QGR</mark> PI LVELKNGETFNGHL <mark>ENCDNYMNL</mark> TLREVI RTMPDGDKFFRLPECYI RGNNI KYLRI QDEVLSQVA	80
AtLSM4 hLSM4 mLSM4 SpLSM4	EEKTRTDRKPPGVGRGRGRGLDDGGARGRGR.GTSNGKNGGNRGAGRGRG EEVVAKGRGRGGLQQQKQQKGRGNGGAGRGVFG.GRGRGGI PGTGRGQPEKKPGRQAGK EEA.AKGRGRGGPQQQKQQKGRGNGGAGRGVFG.GRGRGGI PGAGRGQPEKKPGRQAGK KQQ.AQORENRGSRF.RGRCORGRCNYGHTAPNRR.GRGRGGHM	129 138 137 121

Supplemental Figure 7. Sequence alignment of LSM4 homologs in *Arabidopsis*, human, mouse, and yeast. Sequence alignment of LSM4 homologs in Arabidopsis (AtLSM4: NP_NP_198124.1), human (hLSM4: NP_036453.1), mouse (mLSM4: NP_056631.1) and yeast (SpLSM4: NP_596279.1).

Supplemental Figure 8. RT-PCR analysis of the splice variants of serine/arginine rich Supplemental Data. Zhang et al. (2011). Plant Cell 10.1105/tpc.110.081356 proteins encoding genes.

Supplemental Figure 8. RT-PCR analysis of the splice variants serine/arginine rich proteins encoding genes. Template RNA isolated from 11-day-old seedlings grown on MS medium was treated with 200 mM NaCl for 6 h or 100 μ M ABA for 3 h. The experiment was performed independently three times with similar results. *TUBULIN* was the loading control.

Table SI: Primers for real-time quantitative, quantitative RT-PCR, gene cloning and verification of SALK T-Supplemental Data. Zhang et al. (2011). Plant Cell 10.1105/tpc.110.081356 DNA insertion mutants.

Quantitative RT-PCR primers						
Gene names	Forward primer	Reverse primer				
RD29A	CGGTGGGAGATCAAACTCAA	AACTTCGTCGTCACGGCAGA				
RD29B	GAAACATCGGACTGGGAAGC	CACAGGAGTGTTCAATGGCTCT				
RD24	TGGCGTCGCAGTCCACA	CCAACGTAAATCGGTCTTCC				
COR47	AAGTGAAACCTCAAGAGACAACGA	CAGCTAACTCCGGTTCAGAGATC				
DREB2A	TCAGAGGAGTTAGGCAAAGGATT	TCAGCCGCCGCCTTTT				
ABF3	GAATTCCGCAGAGGCAACA	CCAGCCCTGACCAAAAACTC				
ABI1	TGGCAAGGAAGCGGATTCT	CGCGAGCAACGATGCAT				
HABI	CTTGGTTTGCTCATCACATATAGTAG	TGGCTTCTTTGCCACGGAA				
MRK1	CGATACTTCAGGGCAGATAC	AGGACGCTGCTAGTAGAG				
MEK1	CTTATGCCCTAATCCCATCTGT	ACAGAGACACGGTCTGGAT				
MEKKI	CTTACCATCCGTGGGTTCA	TGTGTCGAAGAATCATGTCTCGT				
At1G17170	AGTATGTTTGGGATGAGGACAAG	CATCTCGAGGAGCAAGGAG				
At5G17460	ATGTTCGCGCGAAGACTCTC	CACTTGCATAAAATCGAGTTGCTTG				
ChIP quantitati	ve PCR primers					
Primer names	Forward primer	Reverse primer				
<i>RD29-</i> a	ccaataaacgtggaccgact	ctctctacgtggctatgcga				
<i>RD29-</i> b	GCGCACCAGgttaatttctc	TCACGGCAGAGGATTCATAC				
<i>RD29-</i> d	CCGACTCATTATCCTCTCGG	CACGTCCTCTGTTGCTGAAA				
<i>RD29-</i> e	AAGACAAGGACGCGAAGAAG	TCACATCACCTCTTGTCGGA				
<i>RD29-</i> f	ACTGCTTACGGGCAGAAAGT	TTCACTCCACTTCCACCTCC				
<i>RD29-</i> g	GGGAACTGAagatttggggt	aatgggccgctaaaagagtt				
<i>RD29-</i> h	tgtgacatttagaccttatcggaa	tcctccatcaaatcatgcgt				
<i>RD29-</i> i	ttcgttcttgacatcattcaattt	aaacggcacatccttctcat				
<i>RD29-</i> j	gccaatagacatggaCCGAC	TTGCTCTCTACGCGTGTCTG				
FLC-1	ggcacagctccgagtgtta	atggagccacacaaacatttc				
FLC-2	ttgccatatgtgtggacatt	cactegectaegteateaaa				
HAB1-1	ggctgtcgtcttccatcttt	tcagtgtttaatggaatcgtctt				
HAB1-2	aaaaaggaaagaaagaaatcaa	ttttaaggtcgcttcaggca				
HAB1-3	ttttcaatcggaagatttttgc	agaacatgggtttccttggat				
HAB1-4	AGAAGCGGGTCTTCCAATGT	ATAATCGCGGTTGCAAGAAC				
HAB1-5	AGCAGGTGCAGTGGGATAAAG	TACGGTCTCAGACGCAACAG				
HAB1-6	AGGTCCATCGgtaagcattg	gaggaggaaagaaaccggag				

Gene cloning primers						
Gene names	Forward primer	Reverse primer				
At1g65700 (LSM8)	GGAATTCATGGCGGCAACTACTGGAC TTG	CCCTCGAGTCAATGCACTACGGGTT TCAACG				
At3g11500 (SMG-B)	GGAATTCATGAGTCGATCAGGTCAGC CTC	CCCTCGAGCTAAGATCTTCCAACTG GTTCG				
AT2g43810 (LSM6-B)	GGAATTCATGAGTGGAGTTGGAGAGA AAGC	CCCTCGAGCTATGCTCCATCTGACA ATGTCC				
AT2g03870 (LSM7)	GGAATTCATGTCTGGAAGAAAAGAAA CGG	CCCTCGAGTTAGACAGCCTCTGCAG TAAC				
At2g18740 (SME-B)	GGAATTCATGGCGAGCACCAAAGTTC AAAG	CCCTCGAGTCACTTTCCCGTGTTCA TCATCAG				
At4g30330 (SME-A)	GGAATTCATGGCGAGCACCAAAGTTC	CCCTCGAGTCACTTGCCCGCGTTCA TCATG				
At5g27720 (LSM4)	GGAATTCATGCTTCCTCTATCGCTGCT TAAAACTG	CCCTCGAGTCAACCACGGCCGCGA C				
<i>At5g27720</i> (<i>LSM4</i> -d1)	GGAATTCATGCTTCCTCTATCGCTGCT TAAAACTG	CCCTCGAGTCTGTTGCCACCCATCT TCC				
At5g27720 (LSM4-d2)	GGAATTCATGCTTCCTCTATCGCTGCT TAAAACTG	CCCTCGAGTCCTCCATCATCCACAC CAC				
At5g27720 (LSM4-d3)	GGAATTCATGCTTCCTCTATCGCTGCT TAAAACTG	CCCTCGAGTCCAACACCTGGTGGTT TTCTATC				
quantitative RT	-PCR primers					
Gene names	Forward primer	Reverse primer				
SKB1	TGGTTAAGATGGAAGGATGGGAAGAC G	GGTGTTGCTGTTGTAGGCTCGATCC				
RD22	ATGGCGATTCGTCTTCCTCTGATCT	CTAGTAGCTGAACCACACAACATG AG				
SRP34	ATGAGCAGTCGTTCGAGTAG	TTACCTCGATGGACTCCTAG				
SRP34A	ATGAGTGGGCGATTTTCTCGG	TCACACACTGCCTTCGCG				
RSP31A	AGCAAGTTCGGGAGAGTGAA	GCCCAACAACATCTTCAACC				
RSP40	ACTACGCCTGCCAAAATCAT	CACCATCATACCCACCATCA				
RSP41	GAGAGCCTCGAAGAAAGCAA	GCGATTTCGAATGGAGTCAT				
RSZ21	TGCAACATGACGAGGGTTTA	AAAAGGCGCCACAGAGTAGA				
RSZ22a	AAGAGCCAAAGCCGTTTCTT	TGCATAGGTTTTTAGCAGAGCTT				
FLC	CCCCATATGGGAAGAAAAAAACTAG	CCCGGATCCCTAATTAAGTAGTGGG AG				
RSZ32	GTATCATCCGCGGTTCACTT	TGTCCTCCACGCTTTTCTCT				
RSZ33	GCAGTGCTCTCCTTCAATCC	ACATGCTACAATGCCTGCAA				
8025	CCTTCCGTACGACTGCTGAT	TCAACATGGTTGTGCCATCT				
3033	CETTECOTACOACTOCIOAT	reimenteerter				

SCL30	CTCCTCGACGTGGATATGGT	ACCTTCATAGCCAGGGGAGT	
SCL30a	TTCCCCTGTGTTTTTCTTCG	CTTTGGCTCCTTGCTTGTTC	
AT1G13350	AAGCGGCACAAGTCCCGTC	CCCTCTCTCTACTACTATACCTGG	
TUBULIN	TTTGGAGCCTGGGACTATGGAT	ACGGGGGAATGGGATGAGAT	
HABI	CTTGGTTTGCTCATCACATATAGTAG	CACATCAATATCCGTCTCCTTGC	
FIP1	CATAGAGGACATGAAGACTTCTCTG	TGTATCTCATCACCAGAGGATGC	
AT1G15940	TCCTCTTGTCGAAGCGACTGA	AAGCACCAGTTGAGGATGATCC	
AT1G28060	ATCGTGATCGAGATTCGAGTCC	AGCCACATCCTCAAACCTGCT	
AT1G24160	GCATATCTCTATGAATCTGGATCCAC	GAGCTTTTCGATACGGTCCGC	
AT1G69250	ATCTGCCATTGAATGCAATGCCG	TTACACGAAGCTTACGGTCTGC	
AT1G42440	CTGCTTGGATTGTGGATGAAACAG	CTTCGTCATCAGCATATGCCTC	
CDPK13	GAGTTGAAAGCCGGACTTCG	GAGATGCTCATCGTTTGCTACC	
CBL1	GTGAGTGAGGTTGAAGCATTATTTGA G	CCGAAATCGATGACTCCTTTTCG	
AT1G18160	TGAGCTACAGCTTGAAAGCAACC	ACTGGCAGAGTAGACAGAATCATC	
At1g45249	TGTTACGCCATTGTCATCAGAAGG	TGCTTTCGTTGTAACTCGTCATTCTC	
At1g17550	GTGTATATGATGGCCACGGAG	ACCTGGACATGGCAAGAACG	
ATIG72050 GCAGCATATGCAGAGTCATTCG AGCTAGCAGCACAA		AGCTAGCAGCACAATCATCCAC	
AT1G49670	GTTGGACTAATTGCAGCAGTGG	TGCAGTTAATCCCGAGGTAAGC	
CDKP2	GTTGGACTAATTGCAGCAGTGG	CTCATCATTGCTGTAAACTCCGAG	
СІРКЗ	GTTGGACTAATTGCAGCAGTGG	AGAACCCTCAGAGACTTGAGC	
AT1G49670	GTTGGACTAATTGCAGCAGTGG	AGCCTTATCCAACTGAGCTGC	
RLP4	GTTGGACTAATTGCAGCAGTGG	GGTAGGAAACCTTTCAGACCTTG	
SALK T-DNA in	nsertion mutants verification primers		
SALK number	Forward primer	Reverse primer	
SALK_057540	AAGTGGAGGCTGTCAGACATG	TTCATCCCGCATGAGATAGAC	
SALK_007750	CGAGAATCTTTATTCGAGCCC	GAATCTCTCTCTTTTCTCCGCC	
SALK_150861	AAAAGCTGCTGGAAAGAGTCC	GCTACTGCTTGAGTTTGGTGC	
SALK_065480	CCTTCATCGCAATCGTAAATC	TTTTGCGCTAAACTAGTTGGG	

Gene locus*	Splicing event	Alternative Splicing regions	Splicing position
At2g43410	IR	18028320-18028448	intron 4
At4g23260	A3'S	12168162-12168399; 12167917-12168070; 12167917-12168017	exon 6
At5g24270	A5'S	8239181-8239261; 8239381-8239433; 8239352-8239433	exon 6
At3g16800	A3'S	5721105-5721154; 5721256-5721542; 5721274-5721542	exon 2
At4g24740	IR	12755783-12755931; 12756047-12756144	intron 5,6
At3g20270	A3'S	7067772-7068038; 7068130-7068281; 7068124-7068281	exon 3
At3g25840	A5'S	9451861-9452032; 9452135-9452183; 9452110-9452183	exon 14
At3g01150	IR	51915-52154	intron 1
At1g54360	A5'S	20291458-20291595; 20291302-20291378; 20291302-20291357	exon 5
At5g57630	IR	23342391-23342488	intron 3
At2g15530	A5'S	6774084-6775826; 6773917-6773964; 6773917-6773983	exon 2
At1g53650	A3'S	20029591-20029659; 20030962-20031447; 20029405-20029466; 20030554-20030667; 20029405-20029462;20030554-20030665	exon 9 exon 2
At4g38510	A5'S	18014735-18014796; 18014903-18014975; 18014884-18014975;1679826-1679886; 1679826-1679909	exon 2
At2g04790	A3'S	1679516-1679719; 1679521-1679719; 1679528-1679719 1679805-1679886; 1679805-1679909; 1679805-1679886	exon 2
At5g18620	A3'S	6197403-6197461; 6197152-6197317; 6197152-6197297	exon 21
At2g39730	A3'S	16571180-16571472; 16570746-16571066; 16570746-16571060	exon 7
At1g72650	A3'S	27351194-27351246; 27350924-27351246	exon 4
At3g12250	A5'S	3906244-3906525;3906451-3906525;3906244-3906416;3906451-3906416	exon 3
At3g23900	A3'S	8634745-8635182; 8634109-8634616; 8634109-8634305	exon 3
At3g29160	A3'S	11129883-11129966; 11131004-11131188; 11129659-11129799; 11130727-11130909; 11129659-11129794; 11130727-11130893	exon 9 exon 4
At2g33480	IR / A3'S / A5'S	14181790-14181878; 14181536-14181789; 14181879-14182402; 14181908-14182402	intron 2 exons 2, 3
At3g62190	IR	23022260-23022334	intron 4
At4g31720	IR	15355516-15355611	intron 2
At1g60850	A3'S	22400285-22400362; 22400021-22400178; 22400021-22400167	exon 2
At3g12570	ES / IR	3988714-3988823; 3989180-3989266; 3989386-3991079; 3989267-3989385; 3989267- 3989356	exon 2 intron 2
At4g12790	ES/A3'S/ A5'S	7518643-7518751;7518848-7518955;7519326-7519422; 7518848-7518926;7519326- 7519396;7518848-7518924; 7519326-7519397;7519173-7519422; 7518848-7519081	exon 2 exons 2, 1

Table S2. Salipernative Splisize algered in 2001 A Paper and 16/14-05-14-00-081356

Note: * A comparison of our RNA deep sequence results and data in the Sanchez, *et. al.*(Sanchez et al., 2010) paper (Supplementary Table 4). Splicing defects of Genes shown here exist in both datasets. IR: intron retention; A5'S: alternative 5' splicing; A3'S: alternative 3' splicing; ES: exon skipping.