Hydrogen peroxide inactivates the *Escherichia coli* Isc iron-sulfur assembly system, and OxyR induces the Suf system to compensate.

Soojin Jang# and James A. Imlay*

Key words: Iron-sulfur clusters, the Suf system, the Isc system, and oxidative stress

Department of Microbiology, University of Illinois, Urbana, IL 61801

*Corresponding author: (217)-333-5812; fax 217-244-6697; jimlay@uiuc.edu

#Current address: Department of Medical Microbiology, Washington University School of Medicine, St. Louis, MO 63110.

Supplementary figures.

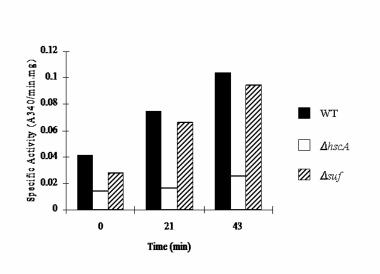
S1. The Isc system is the major iron-sulfur cluster assembly system during normal growth.

NADH dehydrogenase I is induced when anaerobic cultures are aerated. Activities were measured at intervals after the aeration (at time zero) of wild-type, $\Delta hscA$, and Δsuf cultures. Note that NADH dehydrogenase I is synthesized in strains lacking the Suf system (Δsuf) but not in strains lacking the Isc system ($\Delta hscA$)

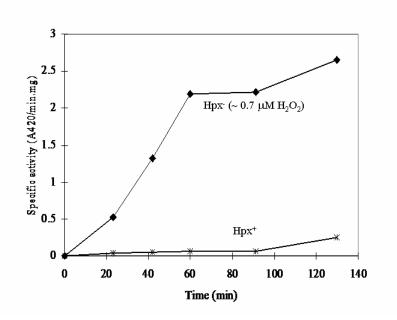
S2. The *suf* operon is induced by sub-micromolar H_2O_2 . Expression after aeration of a transcriptional *lacZ* fusion placed behind the *suf* promoters. Concurrent measurements showed that the H_2O_2 level rose from 0.2 to 0.7 micromolar over the course of this experiment. The specific activity reached only 0.27 in a strain that lacked the OxyR binding site upstream of the *suf* promoter (Fig. 8A).

S3. OxyR is required to induce the Suf system at the sufficient level. Anaerobic $Hxp^{-}Suf^{+}$, $Hpx^{-}suf^{NI}$, and $Hpx^{-}Suf^{-}$ cells were diluted into aerobic glucose medium with 6 μ M H₂O₂. The suf^{NI} allele lacks the OxyR binding site.

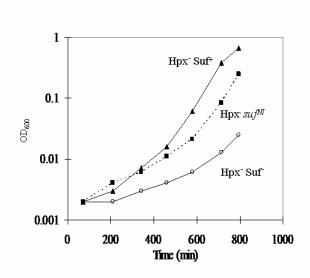
S4. The inactivation of the Isc system is not due to damage to ferredoxin by H_2O_2 . (A) Hpx⁻ cells that overproduce Fdx were harvested anaerobically, concentrated, and then exposed to 0, 10, or 100 μ M H₂O₂. Catalase and dithionite were then added to reduce the iron-sulfur cluster to an EPR-visible species. The EPR spectrum of purified Fdx (top) is shown as a control. No significant EPR signal was visible in control strains lacking the *fdx* plasmid (not shown). Note that prior H₂O₂ exposure does not diminish the EPR signal. (B) NADH dehydrogenase I is induced when anaerobic cultures are aerated. Activities were measured at intervals after the aeration of the cultures that were grown in lactose medium. Two independent cultures of Hpx⁻

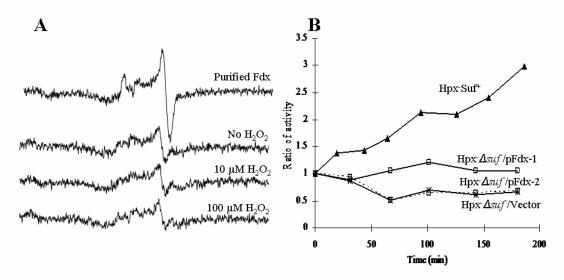

 Δsuf containing pFdx are presented.

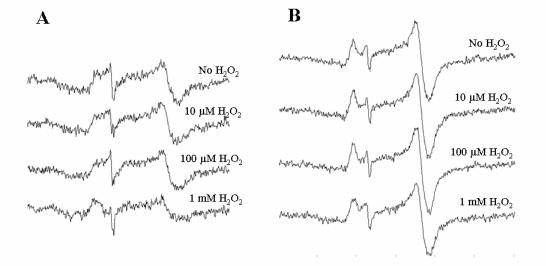
S5. EPR analysis was not able to detect damage to iron-sulfur clusters in the Isc system

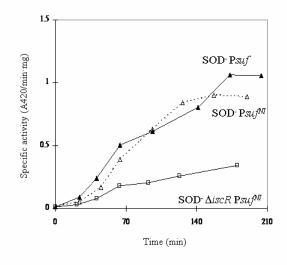

during H_2O_2 stress. (A) Hpx⁻ cells that overproduce the Isc system were harvested anaerobically, concentrated, and then exposed to the indicated concentrations of H_2O_2 . Note that H_2O_2 does not generated any [3Fe-4S]⁺ signal. (B) EPR analysis was also performed after the H_2O_2 -exposed cells were treated with catalase and 10 mM dithionite. Prior H_2O_2 treatment did not diminish the EPR signals arising from the reduced Isc protein clusters.

S6. Apo-IscR was accumulated during superoxide stress resulting in the induction of the Suf


system. Expression after aeration of transcriptional *lacZ* fusion placed behind either the *suf* promoter (*Psuf*) or the *suf*^{A/I} promoter that lacks the OxyR binding site (*Psuf*^{A/I}). The Suf induction was mediated by apo-IscR not by OxyR. No significant induction of the Suf system was detected in SOD⁺ cells at comparable cell densities (not shown).


S2


S1



S3

S5

