Supplementary Online Material

Figure S1. ICP-DRC-MS shows no significant changes in the levels of zinc, copper or manganese in proteasome degradation-defective *Mtb*. ICP-DRC-MS results for (A) zinc, (B) copper, and (C) manganese. 10 ml of *Mtb* cultures were grown in 7H9 to early stationary phase, lysed in nitric acid, neutralized and brought up to 3 ml in metal free water. After ICP-DRC-MS analysis, we calculated the number of atoms per CFU. Data are representative of three replicates.

Figure S2. *socAB* is expressed in *Mtb*. WT *Mtb* RNA was used as a template for cDNA synthesis using random hexamers to prime the reaction following the same protocol used for cDNA preparation for qRT-PCR. cDNA was used as a template for PCR. Lanes correspond to samples treated with RT (+), without RT (-) or samples using genomic DNA as a positive control for the PCR (G). Shaded bars correspond to the amplified fragments.

Figure S3. *ctpV* does not respond to copper in the $\triangle csoR::hyg$ mutant. *ctpV* RNA levels in WT *Mtb* and the $\triangle csoR::hyg$ mutant with and without copper were measured using qRTPCR. This is representative of two biological replicates, done in triplicate.

Figure S4. *Mtb* copper sensitivity is dose dependent. We performed a copper sensitivity assay as described in Fig. 6 and in the *Experimental Procedures*. The OD₅₈₀

was measured after 10 days of exposure to varying levels of CuSO₄ added to Sauton's minimal media.

(Darwin et al., 2003)

(Darwin et al., 2003)

(Festa et al., 2007)

(Festa et al., 2007)

This work

Table S1. Strains, Plasmids and Primers

MHD22

MHD23

MHD62

Strain, plasmid, or primer	Genotype or sequence	Source or Reference
<i>M. tuberculosis</i> strains:		
H37Rv:		
H37Rv	WT	American Type Culture Collection 25618
MHD2	Kan ^R ; <i>pafA::</i> ФМусоMarT7	(Darwin et al., 2003)
MHD4	Kan ^R ; <i>mpa607::</i> ФМусоМаrT7	(Darwin et al., 2003)
MHD5	Kan ^R ; <i>mpa::</i> ΦMycoMarT7	(Darwin et al., 2003)
MHD18	Hyg ^R ; WT, pMV306, Strain:H37Rv	(Darwin et al., 2003)

MHD63Kan^R, Hyg^R; $pafA::\Phi$ MycoMarT7, pMV306MHD572Hyg^R; $\Delta csoR::hyg$

Kan^R, Hyg^R; *mpa::*ΦMycoMarT7, pMV306

Kan^R, Hyg^R; *pafA::*ΦMycoMarT7, pMV306

Kan^R, Hyg^R; mpa::FMycoMarT7, pMV306-mpa

CDC1551:

CDC1551	WT	W. Bishai collection
JHU0847-269	Kan ^R ; <i>ricR::</i> ФМусоМагТ7	TARGET, Johns Hopkins School of Medicine
MHD588	Hyg ^R ; WT, pMV306	This work
MHD589	Kan ^R , Hyg ^R ; <i>ricR::</i> ФМусоМаrT7, pMV306	This work
MHD590	Kan ^R , Hyg ^R ; <i>ricR::</i> ФМусоМаrT7, pMV <i>-ricR</i>	This work
<i>E. coli</i> strains:		
DH5a	F-, p80d/acZ Δ M15 Δ (lacZYA-argF)U169 deoR recA1 endA1	Gibco, BRL
	hsdR17 (r_k - m_k +) phoA supE44 λ - thi-1 gyrA96 relA1	
ER2566	F- λ- fhuA2 [lon] ompT lacZ::T7 gene1 gal sulA11	(Chong <i>et al</i> ., 1994)
	∆(<i>mcrC-mrr</i>)114::IS10 R(<i>mcr-73</i> ::miniTn10)2	
	R(<i>zgb-210</i> ::Tn10)(Tets) <i>endA1</i> [dcm]	
Plasmids:		
pET24b(+)	Kan ^r ; for production of C-terminal His ₆ epitope-tagged protein	Novagen
pET24b(+)- <i>ricR</i>	Kan ^r ; for expression of <i>ricR</i> -his ₆	This work

pET24b(+)- <i>ricR-</i> stop	Kan ^r ; for expression of un-tagged <i>ricR</i>	This work
pET24b(+)- <i>csoR</i>	Kan ^r ; for expression of <i>csoR</i> -his ₆	This work
pMV306	Hyg ^r ; integrates in single copy on the chromosome	(Stover et al., 1991)
pMV306- <i>pafA</i>	Hyg ^r ; for complementation of the <i>pafA</i> mutant	(Festa et al., 2007)
pMV306- <i>mpa</i>	Hyg ^r ; for complementation of the <i>mpa</i> mutant	(Darwin et al., 2003)
pMV306- <i>ricR</i>	Hyg ^r ; for complementation of the <i>ricR</i> mutant	This work
pYUB- <i>csoR</i>	Hyg ^r ; 700 bp flanks of <i>csoR</i> cloned on either end of a hyg ^r cassette	This work
pAJD107	Amp ^r ; large multiple cloning site	(Darwin & Miller, 2001)
pAJD- <i>lpqSp</i> -GG-TT	Amp ^r ; plasmid with the <i>lpqS</i> promoter cloned, GG to TT mutation	This work
pAJD- <i>lpqSp</i> -Destroy	Amp ^r ; plasmid with the <i>lpqS</i> promoter cloned, palindrome is destroyed	This work
pYUB854	Hyg ^r ; allelic exchange vector	(Bardarov <i>et al.</i> , 2002)

Primers:

Rv2963 RACE1	GTTGGCGGTCCAATAATGAT
Rv2963 RACE2	GACCTGGGAAATCCTGTGG
lpqS PE	TTTGGGTGAGCCACATGAC
<i>mymT</i> RACE1	CTACTTGACCGGGGGCCAATTCG
mymT RACE2	CCAATTCGTCGCCGCAGGTGCAG

socA RACE1	TTGAGAATTGCGTCACATCC
socB RACE2	CCATGGAGGGCAAATGTC
Rv0190 RACE1	AGTGGCTCAGGTGCTCGT
Rv0190 RACE2	GCGCTGATCTGGGTCAGAA
Rv2963 qRTF	TTTGGCTCGGTCACTATTCC
Rv2963 qRTR	ATCATTATTGGACCGCCAAC
<i>lpqS</i> qRTF	CTCCCCCAGCTCCACCGTCA
<i>lpqS</i> qRTR	GGTCGGTAAGCGCGGCTGTC
<i>mymT</i> qRTF	AGGGTGATACGAATGACGAAC
<i>mymT</i> qRTR	TCACGTCTACTTGACCGGG
<i>mysT</i> qRTF	CGACCCCGACGAAGTAAGAG
<i>mysT</i> qRTR	GTAGTGCCCAGGCATTGAGA
<i>mysU</i> qRTF	CTGAAAGCCCGGAAGGA
<i>mysU</i> qRTR	TCACGTAACGCCCTGAGC
Rv0190 qRTF	CTACACGCAGCAAAAGGACA
Rv0190 qRTR	GTGCTCGTCCAGCAGGTT
<i>rpoB</i> qRTF	TCGTTCTCTGACCCTCGTTTC
<i>rpoB</i> qRTR	ACGTGCCCTTCTCGGTCATCA
csoR qRTF	AAGGAATTGACCGCAAAGAA

<i>csoR</i> qRTR	CACGTCTCCAAGTGGTTGTG
<i>ctpV</i> qRTF	CGCGTGTGCGTCACCGGG
<i>ctpV</i> qRTR	CCGACAGCACGGCGGCGG
<i>dlaT</i> qRTF	ACAACGAGGACACCAAGGAG
<i>dlaT</i> qRTR	TACCGATGTTGGTGATGGG
Rv0190 comp F-HindIII	GACAAGCTTCATTGTTCAAGTATGCGGCCCAAG
Rv0190 comp R-Kpnl	GACGGTACCTCAGGAACGAACCAGGCGCGCG
<i>lpqS</i> affinity F-BIO	[BIO-TEG]ATCGCTCCTCGTCTGGATTT
<i>lpqS</i> affinity R	AGCGCGACCGCGACAATC
pks12 DAC F BIO	[BIO-TEG]GAGCAAGGGTAAGTGGGACA
pks12 DAC R	TCTTGCCCATCTCCAAGAAC
csoR DAC F BIO	[BIO-TEG]CTCATCGTCCACGAGCCTAC
csoR DAC R	AATTCCTTGCTCATGGCTTG
Rv0190 rev stop EcoRI	GACGAATTCTCAGGAACGAACCAGGCGCGCGATTG
RV0190 F Nndel	GACCATATGACAGCAGCACACGGCTACAC
Rv0190 rev Xhol	GACCTCGAGGGAACGAACCAGGCGCGCGATTG
gg1213ttF	CACCCTACCCCTATAGTTTATATAGTGGGCCACGTGGAAG
gg1213ttR	CTATATAAACTATAGGGGTAGGGTGTAAGGGCGGATGATGG
pal destroy F	CACCCCGAGATGATTACGGATATAGTGGGCCACGTGGAAAG

- pal destroy R CTATATCCGTAATCATCTCGGGGTGTAAGGGCGGATGATGG
- IpqSIFUPPstI GACCTGCAGTGGCTCAGTCGGATCGTCGACGAC
- *lpqS*-his6R Pstl GACCTGCAGTCAGTGGTGGTGGTGGTGGCGACGAGCCAGGCAGAAC
- csoR KO1 kpnl GATGGTACCCTTGCTATTTGCGGCTATTTG
- csoR KO2 xbal GATTCTAGACATGGCTTGCCCCTAATCCCTC
- csoR KO3 ncol GATCCATGGTGACGAGCGCCGGACTCCG
- csoR KO4 hindIII GATAAGCTTGCAACGCGACGCCTTCAG

References

- Bardarov, S., S. Bardarov Jr, Jr., M. S. Pavelka Jr, Jr., V. Sambandamurthy, M. Larsen, J. Tufariello, J. Chan, G. Hatfull & W. R. Jacobs Jr, Jr., (2002) Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in *Mycobacterium tuberculosis*, M. bovis BCG and *M. smegmatis*. *Microbiology* **148**: 3007-3017.
- Chong, Y. H., J. M. Jung, W. Choi, C. W. Park, K. S. Choi & Y. H. Suh, (1994) Bacterial expression, purification of full length and carboxyl terminal fragment of Alzheimer amyloid precursor protein and their proteolytic processing by thrombin. *Life Sci* 54: 1259-1268.
- Darwin, A. J. & V. L. Miller, (2001) The *psp* locus of *Yersinia enterocolitica* is required for virulence and for growth in vitro when the Ysc type III secretion system is produced. *Mol Microbiol* **39**: 429-444.
- Darwin, K. H., S. Ehrt, J. C. Gutierrez-Ramos, N. Weich & C. F. Nathan, (2003) The proteasome of *Mycobacterium tuberculosis* is required for resistance to nitric oxide. *Science* **302**: 1963-1966.
- Festa, R. A., M. J. Pearce & K. H. Darwin, (2007) Characterization of the proteasome accessory factor (*paf*) operon in *Mycobacterium tuberculosis*. *J Bacteriol* **189**: 3044-3050.
- Stover, C. K., V. F. de la Cruz, T. R. Fuerst, J. E. Burlein, L. A. Benson, L. T. Bennett, G. P. Bansal, J. F. Young, M. H. Lee, G. F. Hatfull & et al., (1991) New use of BCG for recombinant vaccines. *Nature* **351**: 456-460.