Supplementary Material

Development, Specification, and Diversity of Callosal Projection Neurons

Ryann M. Fame^{*1}, Jessica L. MacDonald^{*1}, and Jeffrey D. Macklis^{1,2}

* These two authors contributed equally to this work.

¹ MGH-HMS Center for Nervous System Repair, Departments of Neurosurgery and Neurology, and Program in Neuroscience, Harvard Medical School; Nayef Al-Rodhan Laboratories, Massachusetts General Hospital; and Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University.

²Corresponding author: Jeffrey D. Macklis (Jeffrey_macklis@hms.harvard.edu)

	Table S1. Genes exp	pressed in callosal	projection ne	eurons (CPN)	and their prog	<u>enitors</u>
--	---------------------	---------------------	---------------	--------------	----------------	----------------

	Gene	Expression	Developmental Stage	Published Function in CPN/progenitors	Refs
CPN Progenitors	Ap2g	VZ progenitors	embryonic	regulates basal progenitor fate, and formation of layer II/III CPN in the occipital cortex	[S1]
	Brn1	SVZ IPCs and migrating neuroblasts	embryonic	together with <i>Brn2</i> , regulates generation and migration of layers II-IV	[S2, S3]
	Brn2	SVZ IPCs and migrating neuroblasts	embryonic	together with <i>Brn1</i> , regulates generation and migration of layers II-IV	[S2, S3]
	Cux1	mitotic SVZ IPCs	embryonic	unknown	[S4]
	Cux2	mitotic SVZ IPCs	embryonic	regulates SVZ progenitor proliferation and generation of superficial layers	[S4-S6]
	Lhx2	VZ and SVZ progenitors	embryonic	regulates cortical hem formation	[S7, S8]
	Svet1	SVZ IPCs	embryonic	unknown	[S9]
	Tbr2	SVZ IPCs	embryonic	regulates IPC specification, and expansion of all cortical layers.	[S10-S12]
	Tlx	VZ and SVZ progenitors	embryonic	regulates generation of layers II/III and size of corpus callosum	[S13, S14]
	Unc5d	SVŽ IPCs	embryonic	unknown	[S15]
Post-mitotic CPN	Brn1	layers II/III and IV	maintained through early postnatal development	unknown	[S2, S3]
	Brn2	layers II/III and IV	maintained through early postnatal development	unknown	[S2, S3]
	Btg1	CPN in layers II/III	high at E18, decreasing postnatally	unknown	[S16]
	Cav1	CPN in deep sublamina of II/III, and Va	high at P3, and decreased by P14	unknown	[S16]
	Chn2	CPN in deep sublamina of II/III	high at P6, with expression maintained at P14	unknown	[S16]
	Cited2	CPN in layers II/III, V,	high at E18, decreasing	unknown	[S16]

	and VI	postnatally		
Cux1	layers II/III and IV	from embryonic	regulates dendritic branching, and synapse	[S4, S17]
		development through	formation of layer II/III CPN	
		adulthood		
Cux2	layers II/III and IV	from embryonic	regulates dendritic branching, and synapse	[S4, S6,
		development through	formation of layer II/III CPN	S17]
		adulthood		
Dkk3	CPN in layer VI	increasing expression	unknown	[S16]
		postnatally		
Dtx4	cortical plate and	early post-mitotic until	unknown	[S15]
	superficial sublamina	early postnatal		
	of II/II, layer IV	(decreased by P14)		
EphA3	CPN in superficial	high at E18, decreasing	unknown	[S16]
	sublamina of II/III	postnatally		
Frmd4b	CPN in superficial	high at E18, decreasing	unknown	[S16]
	sublamina of II/III	postnatally		
Gfra2	CPN in Layers V and	increasing expression	unknown	[S16]
	VI	postnatally		
Gpr6	layers II/III, highest	expressed from P3-P15,	unknown	[S18]
	occipital	with highest expression at		
		P6.		
Hspb3	CPN in layers II/III, V,	high at P3, with	unknown	[S16]
	and VI	expression maintained at		
		P14		
Inhba	CPN in layers II/III	high at P3, and	unknown	[S16]
		decreased by P14		
Kitl	layers II/III, IV, and	early post-mitotic until	unknown	[S15]
	early VI	early postnatal		
		(decreased by P14)		
Limch1	CPN in layers II/III	high at E18, decreasing	unknown	[S16]
		postnatally		
Lhx2	layers II-IV	high embryonic and early	necessary to specify neocortex	[S8, S12]
		postnatal expression,		
		decreasing by adulthood		
Lmo4	CPN in layers II/III and	Increases in CPN	regulates area identities and connectivity of	[S19-S22
	V	throughout postnatal	somatosensory cortex	_

		development, with highest expression medially		
Lpl	CPN in layers II/III, V, and VI	high at P3, and decreased by P14	unknown	[S16]
Mdga1	preplate, IZ, and cortical plate. Layers II/III, and layers IV and Vla in S1	high preplate expression at E13.5 and high cortical expression by P7	controls correct migration of layer II/III neurons	[S23, S24]
Mef2c	cortical plate and layers II/III, IV	early post-mitotic until early postnatal (decreased by P14)	critical for differentiation of neocortical neurons	[S15, S25]
Mena	layers II/III, and V	from embryonic development through adulthood	plays a role in actin cytoskeletal dynamics, and is necessary for formation of the corpus callosum	[S26]
miR-189	layers II-IV	high broad neocortical expression at P9 becoming restricted to layers II-IV by P14	binds to <i>Slitrk1</i> , whose overexpression increases dendrite length	[S27]
Nectin-3	CPN in the middle sublamina of II/III	high at P6, and decreased by P14	unknown	[S16]
Nnmt	CPN in the superficial sublamina of II/III	high at P3 and P6, and decreased by P14	unknown	[S16]
PlexinD1	CPN in Va, and the superficial sublamina of II/III	high at P3, with expression maintained at P14	unknown	[S16]
Ptn	CPN in deep sublamina of II/III	high E18-P6, and decreased by P14	unknown	[S16]
Satb2	layers II-IV, V, and VI	early post-mitotic until early postnatal (decreased by P7)	represses Ctip2 to regulate CPN identity and axonal midline crossing	[S28-S30]
Svet1	layers II-IV	maintained from progenitors into adulthood (not observed after P60)	unknown	[S9]
Tcrb	CPN in layers Vb and	increasing expression	unknown	[S16]

	VI	postnatally		
Unc5d	cortical plate and	early post-mitotic until	unknown	[S15]
	layers II/III, IV	early postnatal		
		(decreased by P14)		

Abbreviations: VZ, ventricular zone; SVZ, subventricular zone; IPC, intermediate progenitor cell; E, embryonic day; P, postnatal day; S1, primary somatosensory cortex; roman numerals (I-VI) label neocortical layers.

Supplementary References

- S1. Pinto, L., *et al.* (2009) AP2γ regulates basal progenitor fate in a region- and layer-specific manner in the developing cortex. *Nat Neurosci* 12, 1229-1237
- S2. McEvilly, R.J., et al. (2002) Transcriptional regulation of cortical neuron migration by POU domain factors. Science 295, 1528-1532
- S3. Sugitani, Y., et al. (2002) Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. Genes Dev 16, 1760-1765
- S4. Nieto, M., et al. (2004) Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II-IV of the cerebral cortex. J Comp Neurol 479, 168-180
- S5. Cubelos, B., et al. (2007) Cux-2 Controls the Proliferation of Neuronal Intermediate Precursors of the Cortical Subventricular Zone. Cerebral Cortex 18, 1758-1770
- S6. Zimmer, C., *et al.* (2004) Dynamics of Cux2 expression suggests that an early pool of SVZ precursors is fated to become upper cortical layer neurons. *Cereb Cortex* 14, 1408-1420
- S7. Bulchand, S., et al. (2001) LIM-homeodomain gene Lhx2 regulates the formation of the cortical hem. Mech Dev 100, 165-175
- S8. Bulchand, S., et al. (2003) Dynamic spatiotemporal expression of LIM genes and cofactors in the embryonic and postnatal cerebral cortex. Dev Dyn 226, 460-469
- S9. Tarabykin, V., *et al.* (2001) Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. *Development* 128, 1983-1993
- S10. Englund, C. (2005) Pax6, Tbr2, and Tbr1 Are Expressed Sequentially by Radial Glia, Intermediate Progenitor Cells, and Postmitotic Neurons in Developing Neocortex. *Journal of Neuroscience* 25, 247-251
- S11. Sessa, A., et al. (2008) Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. *Neuron* 60, 56-69
- S12. Chou, S.-J., et al. (2009) Lhx2 specifies regional fate in Emx1 lineage of telencephalic progenitors generating cerebral cortex. Nat Neurosci, 1-10
- S13. Land, P.W., and Monaghan, A.P. (2003) Expression of the transcription factor, tailless, is required for formation of superficial cortical layers. *Cereb Cortex* 13, 921-931

- S14. Roy, K., et al. (2004) The TIx gene regulates the timing of neurogenesis in the cortex. J Neurosci 24, 8333-8345
- S15. Zhong, Y., et al. (2004) Identification of the genes that are expressed in the upper layers of the neocortex. Cereb Cortex 14, 1144-1152
- S16. Molyneaux, B.J., *et al.* (2009) Novel Subtype-specific Genes Identify Distinct Subpopulations of Callosal Projection Neurons. *J Neurosci* 29, 12343-12354
- S17. Cubelos, B., *et al.* Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex. *Neuron* 66, 523-535
- S18. Chenn, A., et al. (2001) Temporally and spatially regulated expression of a candidate G-protein-coupled receptor during cerebral cortical development. J Neurobiol 46, 167-177
- S19. Arlotta, P., et al. (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207-221
- S20. Azim, E., et al. (2009) Lmo4 and Clim1 progressively delineate cortical projection neuron subtypes during development. Cereb Cortex 19 Suppl 1, i62-69
- S21. Kashani, A.H., *et al.* (2006) Calcium activation of the LMO4 transcription complex and its role in the patterning of thalamocortical connections. *J Neurosci* 26, 8398-8408
- S22. Huang, Z., et al. (2009) Transcription factor Lmo4 defines the shape of functional areas in developing cortices and regulates sensorimotor control. *Dev Biol* 327, 132-142
- S23. Takeuchi, A., and O'Leary, D.D. (2006) Radial migration of superficial layer cortical neurons controlled by novel Ig cell adhesion molecule MDGA1. *J Neurosci* 26, 4460-4464
- S24. Takeuchi, A., et al. (2007) Novel IgCAM, MDGA1, expressed in unique cortical area- and layer-specific patterns and transiently by distinct forebrain populations of Cajal-Retzius neurons. Cereb Cortex 17, 1531-1541
- S25. Li, H., et al. (2008) Transcription factor MEF2C influences neural stem/progenitor cell differentiation and maturation in vivo. Proc Natl Acad Sci U S A 105, 9397-9402
- S26. Lanier, L.M., et al. (1999) Mena is required for neurulation and commissure formation. Neuron 22, 313-325
- S27. Abelson, J.F., et al. (2005) Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science 310, 317-320
- S28. Alcamo, E.A., et al. (2008) Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron 57, 364-377
- S29. Britanova, O., et al. (2005) Novel transcription factor Satb2 interacts with matrix attachment region DNA elements in a tissue-specific manner and demonstrates cell-type-dependent expression in the developing mouse CNS. Eur J Neurosci 21, 658-668
- S30. Britanova, O., et al. (2008) Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 57, 378-392