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I: Materials and Microarray protocol  

Training set (MicMa) 

The published data [1] have 123 human breast cancer cases, mainly stage I and II. Patients 
treated for localized breast cancer were included in this study [2] between 1995 to 1998. This 
cohort is a subset of a larger study where the patients were monitored for presence of 
disseminated tumor cells in bone marrow (DTC). The selection of patients to adjuvant treatment 
was based upon the prevailing National Guidelines, where postmenopausal hormone receptor 
(HR) positive patients received tamoxifen only, postmenopausal HR negative patients received 
CMF (Cyclophosphamide, Methotrexate, Fluorouracil) and premenopausal patients received 
CMF followed by tamoxifen if HR positive. Five patients received high dose chemotherapy and 
another five, preoperative chemotherapy due to large tumor size [2]. After completed primary 
therapy, the patients were followed at 6-12 months intervals. Fresh frozen tissue samples were 
available from all the 123 individuals. One patient was diagnosed with ductal carcinoma in situ.  

Total RNA was isolated from primary tumor tissues using the TRIzol reagent (Invitrogen). The 
integrity and quality of RNA samples were evaluated on the 2100 Bioanalyzer (Agilent) and the 
concentration measured using a NanoDrop spectrophotometer (NanoDrop Technologies). 
Amplification, and labeling of RNA from tumor with Cy5 and from the Universal Human 
Reference (Stratagene) with Cy3, was performed as previously described [3]. Hybridization of 
labeled cRNA to arrays containing 42,000 features representing 23169 unique cluster IDs 
(UniGene Build Number 215) produced at the Stanford Functional Genomics Facility 
(http://www.microarray.org/sfgf/jsp/home.jsp) was performed at 65°C overnight as previously 
described. The hybridized arrays were scanned on an Agilent DNA microarray scanner and 
images analyzed by GenePix Pro v 4.1. All procedures are available at http://genome-
www.stanford.edu/breast_cancer and all raw data can be obtained from the Stanford Microarray 
Database (SMD; http://smd.stanford.edu/). The data have been deposited in NCBIs Gene 
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO 
Series accession number GSE3985.  

Validation set (Ull)  

The data published by Langerød et. al [4] was used as validation dataset. Patient samples were 
sequentially collected at Ullevål University Hospital from 1990 to 1994. 80 cases were selected 
from the total series based only on sufficient amount of fresh frozen tissue for microarray. The 
last update of patient information was done in 2006, providing an observation time of 12 to 16 
years. Patients were followed until death or emigration, and only 12 patients were lost to follow-
up. The average age of the 80 cases analyzed by cDNA microarrays was 65.0 years at time of 
primary surgery (range 28.2 to 87.7 years). 

Total RNA was isolated from snap frozen tumor tissue using TRIzol® solution (Invitrogen™, 
Carlsbad, California, USA). The concentration of total RNA was determined using an HP 8453 
spectrophotometer (Hewlett Packard) and the integrity of the RNA was assessed using a 2100 
Bioanalyzer (Agilent, Santa Clara, California, USA). Linear amplification of total RNA was 
performed using an optimized protocol previously described [3]. Amplified tumor RNA was 
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labeled by Cy5 and amplified RNA from Universal Human Reference total RNA (Stratagene®, 
La Jolla, California, USA) was labeled by Cy3. The labeling and hybridization of amplified 
RNA to cDNA microarrays, containing more than 42,000 elements, was performed as previously 
described [3]. Experimental protocols can be found at the referred web site 
(http://www.stanford.edu/group/sjeffreylab/). Images of the arrays was acquired using a Gene 
Pix 4000B scanner (Axon Instruments, Sunnyvale, California, USA), and analyzed using Gene 
Pix Pro 3.0/4.0/4.1 software and by visual inspection. Data were entered in the Stanford 
Microarray Database (http://smd.stanford.edu/). 
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II: A brief discussion of the various gene sets & Adjuvant! Online model 

Except for the RS predictor, all gene sets were originally developed as microarray-based 
predictors.  

1. 16-gene recurrence-score predictor (RS) 

These 16 genes are the cancer-related subset from the 21-gene recurrence score RT-PCR-
based assay (Oncotype DX®) in Paik et al. (2004) [5]. The expression for each cancer-related 
gene on RT-PCR assay is normalized relative to the expression of the five reference genes, 
and further used to calculate a recurrence score, RS, which quantifies the likelihood of distant 
recurrence in adjuvant-tamoxifen-treated patients with lymph node-negative, ER-positive 
breast cancer into categories of high risk (RS ≥ 31), intermediate risk (18 ≤ RS < 31), and 
low risk of recurrence (RS < 18). They claimed Recurrence Score® performance is superior 
to that of patient age, tumor size or tumor grade in either predictive power or reproducibility.  

2. 26-gene stroma-derived prognostic predictor (SD) 

This gene set was identified from an analysis of microdissected stroma from breast cancer 
specimens. A logistic regression was used to score and rank each gene in the expression 
profile on the basis of its statistical significance in predicting recurrence in a model that 
included the gene expression level, lymph node status, and ER, PR and HER2 status. And 
naive Bayes’ classifiers were trained to predict outcome using the ranked gene expression 
profile of the recurrence-positive stroma cluster. The original study [6] reported that 26-SD 
prognostic predictor stratified disease outcome independently of standard clinical prognostic 
factors and published expression-based predictors. 

3. 54-lung-metastasis-gene signature (LM) 

By means of in vivo selection, transcriptomic analysis, functional verification and clinical 
validation, a set of 54 genes was identified that mediates risk of breast cancer metastasis to 
lung and is clinically correlated with the development of lung metastasis when expressed in 
primary breast cancers [7]. A cohort of 82 breast cancer patients was used in a univariate Cox 
proportional hazards model to relate the expression level of each lung metastasis signature 
gene with clinical outcome. A ‘leave-one-out’ cross-validated multivariate analysis was used 
to distinguish between patients with a high risk and those with a low risk for developing lung 
metastasis. In each round, each of the 54 gene weights was estimated in a univariate Cox 
using only training set, and a 10-year lung-metastasis risk index for test case (held out from 
the full set of tumors) was defined as a linear combination of gene expression values 
weighted by their univariate result; and the held out tumor was assigned to the high- or low-
risk groups. The 20th percentile of the risk index scores was chosen as the threshold to 
separate high risk (top 20%) and low risk group.  

4. 70-gene predictor (AMST) 
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This breast cancer prognostic signature [8], also known as MammaPrint® genomic test, 
consists of 70 most informative genes derived from a supervised statistical model. Based on 
the expression levels of the 70 genes, it predicts distant metastases status 5 years after the 
diagnosis on younger patients with stage I and II node-negative breast cancer. The signature 
associated with a poor prognosis demonstrates overexpression of genes regulating the cell 
cycle, invasion, metastasis, and angiogenesis. In 2007, MammaPrint® test was approved by 
FDA for use in the U.S. for lymph node negative breast cancer patients under 61 years of age 
with tumors of less than 5cm.  It is the first cleared molecular test that profiles genetic 
activity. 

In a recent preliminary clinical trial, Mook et al. (2008) [9] reported that the 70-gene 
prognosis-signature outperforms traditional prognostic factors in predicting metastasis in 
patients with 1–3 positive nodes. According to the authors, the signature can accurately 
identify patients with a good disease outcome in node-positive breast cancer, who would not 
benefit from adjuvant chemotherapy. 

5. 76-gene predictor (ROT) 

This gene set was used to predict development of distant metastases within 5 years. It was 
developed from 286 patients not receiving systemic treatment, with lymph node negative 
primary breast cancer of variable size and from all age groups [10]. 

6. 97-grade-associated markers (Grade) 

Sotiriou et al. (2006) [11] identified 97 grade-associated genes from 64 ER positive tumor 
samples by comparing expression profiles between histologic grade 3 and grade 1 tumors. 
The signed sum of gene expression values of these 97 genes were used to calculate the gene 
expression grade index (GGI). In validation datasets, the GGI was strongly associated with 
histologic grade. 

7. 127-gene classifier (Robust) 

127 genes were identified as predictors of prognosis from a pooled dataset consisting of six 
breast cancer datasets, totaling 947 samples [12]. The study showed a significant positive 
correlation between the number of datasets that is pooled, the validation performance, the 
number of genes selected, and the enrichment of specific functional categories. The authors 
claimed that the 127 gene signature is one of the most robust signatures currently available. 

8. 168-hypoxia-gene signature (Hypoxia) 

The epithelial hypoxia signature [13] consists of 168 genes that were consistently induced by 
hypoxia. They were defined from an in vitro experiment by Chi et al. (2006) [13] where four 
epithelial cell lines were exposed to hypoxia. A gene expression classier was developed 
through a “hypoxia score” for the patient by averaging expression levels for the hypoxia-
response genes. Patients were assigned into high or low hypoxia response group by a cutoff 
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hypoxia-score at zero. Using published data sets, the authors found that the “high hypoxia 
response” group tends to be higher grade, and more likely to have p53 and oestrogen-
receptor deficiencies, and, most importantly, a significant association with a poorer prognosis 
in breast and ovarian cancer.  

9. 186-invasiveness-gene signature (Stem) 

Liu et al. (2007) [14] report on a 186-gene “invasiveness” gene signature (IGS) that 
discriminates between normal breast epithelium and tumorigenic breast-cancer cells that are 
characterized by CD44 expression and low or undetectable levels of CD24. This signature 
was reported to be associated with survival among patients with breast cancer. 

10. 306-intrinsic/UNC gene list (Intrinsic) 

The original intrinsic gene list was previously identified using DNA microarray in the study 
of Perou et al. (2000) [15] and refined in Sørlie et al. (2001) [16].  It has been used to 
identify five distinct subtypes of breast tumors (basal-like, ERBB2+, luminal A, luminal B 
and normal-breast like) based on the expression profile of the ~ 500 intrinsic genes, whose 
variation was significantly greater between samples from different tumors than between 
samples from the same tumor before and after treatment. These subtypes were associated 
with significant differences in overall and disease-free survival [16,17]. The intrinsic/UNC 
gene list [18] is a new intrinsic-subtype classifier, which uses gene expression profiles to 
distinguish among breast cancers on the basis of either their cell type of origin — the luminal 
cell (which is ER-positive) or the basal cell (which lacks expression of ER, the progesterone 
receptor, and HER2) — or whether the tumor is HER2-positive. Among the UNC intrinsic 
genes, a proliferation signature was not present in previous breast intrinsic gene sets.  

11. 512-core serum response gene list (WR) 

The wound response/core serum response gene list [19] based on a wound-response gene-
expression signature derived from the transcriptional response of normal fibroblasts to serum 
in cell culture, has been shown to improve the risk stratification of early breast cancer over 
that provided by standard clinic pathological features, in that the development of distant 
metastases is more likely among patients whose breast cancers have activated pathways for 
matrix remodeling, cell motility, and angiogenesis than among those whose cancers do not. 

12. Adjuvant! Online model (AOL) 

Adjuvant! Online [20] is a computer based model using patient age, comorbidity level, ER 
status, tumor grade, tumor size and number of positive lymph nodes to predict breast cancer 
specific mortality and recurrence risk, as well as the benefit of adjuvant therapy for women 
with early-stage breast cancer. 

Because Adjuvant! was directly derived from mortality data and because details of local 
therapy (sugery and initial radiation) can strongly influence local relapse rates more so than 
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mortality, Adjuvant!'s estimates of mortality are more firmly based than those for relapse. 
Breast cancer outcome estimates made by Adjuvant! are for “patients who have unilateral, 
unicentric, invasive adenocarcinoma of the breast, who have undergone definitive primary 
breast surgery and axillary node staging, and who have no evidence of metastatic or known 
residual disease; no evidence of T4 features (extension to skin or chest wall); no evidence of 
inflammatory breast cancer. If they have had breast conserving therapy there should be plans 
for them to receive radiation therapy. They should not yet have received systemic therapy 
(neoadjuvant therapy), or radiation prior to their surgical staging.” (Adjuvant! Breast Cancer 
Help Files).  

To calculate the 10-year mortality risk for the 80 patients in the test data (Ull), 3 patients with 
NEOadjuvant; 2 additional patients with metastasis; 3 additional patients with T4 were 
excluded. Among the rest 72 patients, 6 patients are with “other” histologic subtypes. Due to 
the differences between the coding used in Adjuvant! Online and in Ull set for node status 
and tumor size, "positive node = 0" in AOL was specified for Ull patients with unknown 
node status; “tumor size = 0.1-1.0cm” in AOL was specified for patients with unknown 
tumor size; “tumor size = 1.1-2.0cm” was specified for patients with T1 (<=2cm), “tumor 
size = 3.1-5.0cm” was specified for Ull patients with T2 (>2 & <=5cm). The default level 
“Minor Problems” was kept for comorbidity in AOL to give an estimate of the general health 
of an individual. 
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III. Cross-platform gene mapping 

The annotations for the Stanford 43k clones were retrieved from SMD (http://smd.stanford.edu/; 
UniGene Build Number 215). For gene sets that developed from the same platform as Stanford 
43k cDNA array, we matched the genes in the gene set to MicMa and Ull through clone IDs. For 
those developed from other platforms, the matching was done by first using UniGene ID and 
gene symbols to link to Stanford 43k Clone IDs; and then using gene aliases for those genes 
found no match in the preceding step. See table 1 for an example.   
 
Table 1: Illustration of matching gene set to Stanford 43k array. Step 1, UniGene IDs for all the probes 
were retrieved (column “Linker ID 1”). Probe 1 and 2 were found to share the same UniGene IDs with 
Stanford 43k array clone 566115 and 310356/69002, respectively. Step 2, gene symbols were retrieved 
for probes 3, 4, 5 and 6 (column “Linker ID 2”) that had no match in step 1. Probe 3 and 4 were matched 
to clone 122274 and 358030, respectively, linking through shared gene symbols. Step 3, gene aliases were 
retrieved for probe 5 and 6 (column “Linker ID 3”) that had no match after step 1 and 2. Probe 5 was 
matched to clone 33045 by common gene aliases. There is no corresponding clone on Stanford 43k array 
for probe 6. 
 

Procedure Probe Original ID Linker ID 1 Linker ID 2 Linker ID 3 Matched Clone ID 

   UniGene Gene symbol Gene aliases  

1 214827_at Hs.589848   566115 

  310356 Step 1 
2 221009_s_at Hs.9613 

  69002 

3 202728_s_at Hs.619315 LTBP1  122274 
Step 2 

4 203571_s_at Hs.700589 C10orf116  358030 

5 217028_at Hs.593413 CXCR4 NPYR  33045 
Step 3 

6 219959_at Hs.405028 MOCOS MOS  No match 
* Unigene IDs and gene symbols for the genes in the gene sets were retrieved either from manufacture 
chip annotation files or from SMD database (UniGene Build Number 215). 
 
Furthermore for the matched clones representing the same gene symbol were mean-averaged. 
For clones without information of gene symbol, we mean-averaged the multiple matched clones 
that represent the original probe IDs from the corresponding gene signature.  
 
Details of the matching results for individual gene set are describes as follows.  
1. RS (16-gene-recurrence-score predictor):  

Original ID: 16 gene symbols were published.  

Retrieved ID: Corresponding UniGene IDs were retrieved using gene symbols from SMD 
(Build #215).  

Results: 13 matches were found on Stanford 43k array using gene symbols. For those didn’t 
find match by symbol, additional 2 matches were found using gene aliases.   

Total: 15/16 = 94% 
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2. SD (26-gene stroma-derived prognostic predictor):   

Original ID: 26 gene symbols were published.  

Retrieved ID: Corresponding UniGene IDs were retrieved using gene symbols from SMD 
(Build #215).  

Results: 21 matches were found on Stanford 43k array by symbols. For those didn’t find 
match by symbol, additional 1 match was found by using retrieved UniGeneID. 

Total: 22/26 = 85% 

3. LM (54-lung-metastasis-gene signature): 

Original ID: 54 Affy probes were published.  

Retrieved ID: Corresponding UG & symbols were retrieved using 54 Affy probes from chip 
annotation file for Affy U133A chip.   

Results: 45 matches were found on Stanford 43k array using UniGeneID. For those didn’t 
find match by UniGene, additional 2 matches were found using symbols.  For those still 
didn’t find match, additional 1 match was found by using gene aliases. 

Total: 48/54 = 89% 

4. AMST (70-gene predictor): 

Original ID: 70 sequence IDs (including EST & Genbank ID) were published.  

Retrieved ID: 70 Genbank IDs were retrieved from the sequence IDs using the published file 
(http://www.rii.com/publications/2002/vantveer.html). Corresponding UniGeneIDs & gene 
symbols were retrieved by Genbank IDs from SMD (build #215).  

Results: 53 matches were found on Stanford 43k array using UniGeneID. For those didn’t 
find match, additional 4 matches were found using gene aliases. 

Total: 57/70=81% 

5. ROT (76-gene predictor): 

Original ID: 76 Affy probes were published.  

Retrieved ID: Corresponding UniGeneIDs & gene symbols were retrieved using Affy 
probes from chip annotation file for Affy U133A chip.  

Results: 59 matches were found on Stanford 43k array using UniGeneID. For those didn’t 
find match by UniGene, additional 3 matches were found using symbols.  For those still 
didn’t find match, additional 4 matches were found by using gene aliases. 

Total: 66/76=87% 
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6. Grade (97- histologic-grade-associated markers): 

Original ID: 128 Affy probes were published.  

Retrieved ID: Corresponding UniGeneIDs & gene symbols were retrieved using Affy 
probes from chip annotation file for Affy U133A chip.  

Results: 101 matches were found on Stanford 43k array using UniGeneID.  For those didn’t 
find match by UniGene, additional 6 matches were found using symbols. For those still 
didn’t find match, additional 4 matches were found by using gene aliases. 

Total: 111/128=87% 

7. Robust (127-gene classifier): 

 Original ID: 127 Affy probes were published. 

Retrieved ID: Corresponding UniGeneIDs & gene symbols were retrieved using Affy 
probes from chip annotation file for Affy U133A chip.  

Results: 108 matches were found on Stanford 43k array using UniGeneID.  For those didn’t 
find match by UniGene, additional 6 matches were found using symbols.  

Total: 114/127=90% 

8. Hypoxia (168-hypoxia-gene signature): 

Original ID: 253 CloneIDs were published.  

Results: all 253 matches were found on Stanford 43k array using CLID.  

Total: 253/253 = 100% 

9. Stem (186-invasiveness-gene signature): 

Original ID: 186 Affy probeIDs were published.  

Retrieved ID: Since the probes were from different arrays, and information about which 
probes came from which array were not published, 186 gene symbols were retrieved from 
the published annotation file 
(http://content.nejm.org/content/vol356/issue3/images/data/217/DC1/NEJM_Liu_217sa2.xls
); and then UniGeneIDs were retrieved by gene symbols from (build#215), further used for 
the mapping.   

Results: 109 matches were found on Stanford 43k array using gene symbol.  For those didn’t 
find match, additional 52 matches were found using gene aliases. 

Total: 161/186=87% 

10. Intrinsic (306-intrinsic/UNC gene list): 
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Original ID: 327 Agilent probe IDs were published.  

Retrieved ID: Since the 327 probes were from different arrays, and information about which 
probes came from which array were not published. Corresponding UniGeneIDs & gene 
symbols for 327 probes were retrieved from the published 1500-probes-Annotation-table 
(https://genome.unc.edu/pubsup/breastTumor/Hu-et-al-Intrinsic-List-with-Annotation.xls).  

*304 EntrezIDs were also provided by UNC author. There are 294 overlapping with published-
EntrezIDs. 290 out of 304 UNC-EntrezIDs can be mapped on Stanford43k. Did not achieve 100% 
match (according to UNC, it should be 100% match using Entrez alone). Therefore, we used UG & 
symbols & aliases for the mapping instead of Entrez.  

Results: 111 probes were mapped on Stanford 43k array by using UniGene; additional 157 
probes were found by using gene symbol; additional 22 probes by gene aliases. 

Total: 290/306=95% 

11. WR (512 wound response/core serum response gene list):  

Original ID: 573 Clone IDs were published 

Results: 573 matches were found on Stanford 43k array using CLID. (Although the 
platforms are the same, it’s possible some clones were removed from the newer version of 
the Stanford 43k array.  

Total: 561/573=98%  
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IV. Statistical analysis 

A total 118 patients with available information of systemic recurrence status and time to 
recurrence (n = 118) were considered in the analysis. For breast cancer specific survival, 
information was available for 123 patients (n = 123), and these were used in the further analyses. 
 
Theoretical background: Cox regression 
 
The Cox proportional hazards model [21] is widely used to model survival data. No assumption 
has to be made for the underlying parametric distribution of survival times. We applied this 
technique to model and predict our time-to-event data.  We aimed to predict survival probability 
for systemic recurrence and breast cancer specific death, respectively. The variables included in 
the model were expressions of individual genes from gene sets and also the different clinical 
parameters in the later stage of the analysis.  
 
Our data are (tj, dj, Xj), j = 1,…, N, where tj is the time on study of the jth patient, dj is an 
indicator with dj = 1 indicating an event (systemic recurrence or breast cancer specific death) and 
dj = 0 indicating no event at the observed time, and Xj is the vector of risk variables associated 
with the jth patient. In a Cox proportional hazards model, the hazard rate for the jth individual 
with risk vector Xj at time t is as follows: 
   (1) 

Here,  is a parameter vector to be estimated and  is an arbitrary baseline hazard function. 
Even though the form of the baseline hazard function is unspecified, coefficients for the risk 
vector in the Cox model can still be estimated by maximizing a partial likelihood [21]: 

   (2) 

where Rj is the set of individuals still alive and uncensored just before time tj. 
 
Theoretical background: Cox-ridge regression 
 
In our case, the number of explanatory variables genes (p) is large and sometimes even exceeds 
the number of individuals N used for training of the Cox model. Thus overfitting may easily 
arise, leading to a fitted model that describes that training data well, but performs poorly on 
prediction of new observations. In addition, a high degree of collinearity among the variables is 
likely to emerge, thereby leading to a situation in which the estimated regression coefficients 
may change substantially even after slight perturbations of the training data. 
 
In a linear model, dimension reduction techniques and penalized regression are the strategies to 
control and stabilize the variance of the estimates and further achieve better prediction rules. 
Some widely used regression regularization methods such as ridge regression, partial least 
squares and principle components regression were compared in the study by Frank and Friedman 
in 1993 [22]. In Cox-ridge regression, the coefficients are estimated by maximization of the 
penalized partial log-likelihood (using Newton-Raphson procedure): 
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     (3) 

where i =1, …, p, indicates the covariates; the first term is the partial log-likelihood and the 
second term is the penalty term [23]. Here, λ>0 is a tuning parameter that controls how much 
weight to put on the penalty function. 
 
Theoretical background: Model selection by cross-validation 
 
The ridge regression estimates depends on the tuning parameter λ. In our study, λ was determined 
by maximizing the cross-validated partial log-likelihood criterion proposed by Verweij and van 
Houwelingen (1993) [24]. Let 

 
denote the partial log-likelihood when observation i is left 

out (i = 1,…, n), . Then, the contribution of 

observation i to the likelihood is . Let   β̂
(− i) be the value of that 

maximizes . Then the leave-one-out cross-validated partial log-likelihood criterion 
proposed by Verweij and van Houwelingen (1993) [24] is given by:

   
(4) 

 
 

Maximizing the cross-validated partial log-likelihood with respect to λ yields the optimal value 
for the tuning parameter. 
 
Note that in this paper, we focus on obtaining a prediction rule that performs well on new 
observations. Therefore, the value λ is determined by maximizing the predictive value of the 
model. In parametric models [25], the measure for the prediction error is to use the predictive 
log-likelihood, which is the expected value of the model log-likelihood for new observations. 
Due to the semi-parametric nature of Cox model, the partial log-likelihood instead of the full log-
likelihood is used as a predictive log-likelihood so that the baseline hazard does not play a role.  
 
In a comparative study of survival prediction performance using microarray data [26], it has been 
found that Cox-ridge regression often outperforms other common regularization techniques for 
Cox regression, such as principal components regression, supervised principal components 
regression, partial least squares regression and the lasso. 
 
Construct a gee-set prediction model based on gene expression 
 
On the training set, we apply leave-one-out cross validation using Van Houwelingen’s criteria 
[24] to determine the tuning parameter , which is specific for each gene set. We then built a 
Cox-ridge model using for each gene set by incorporating the intensity log ratio of genes from 
the gene set as covariates. Let the vector of gene expression values for the ith patient and the jth 

  
cvl(λ) = l(β̂λ

(− i) ) − l (− i) (β̂λ
(− i) ){ }

i=1

n

∑
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gene set be: 
   
X ij = (Χ i1,Χ i2 ,...,Χ i,nj

)T . For all patients on jth gene set, j = 1,…, 11, we assume a 

Cox-ridge model: 
 

    
hj (t | X j

Training ) = h0 j (t)exp(β
j

T X j
Training )     (5) 

 
where  

X j
Training  is the notation for the training set for jth gene set, which is the gene expression 

matrix matched on MicMa for jth gene set. Gene set j consists a total nj genes. 

  
β

j
= (β j1,...,β j ,nj

)T  are coefficients associated with corresponding genes and   
h0 j (t)  is the 

gene-set specific baseline hazard at certain time point t. It has been recommended to standardize 
the covariates before applying the ridge regression, since the ridge estimates are not invariant to 
the scaling of the input data [22,27]. In our case, the expression for each gene in a matched gene-
set expression matrix was transformed to center around 0 with standard deviation 1. 
Standardization was carried out both for the training set and the test set.  
 
From Model 5 on the training data, we obtained the estimated coefficients 

  
β̂ j

. The estimated 
Prognostic Index for each MicMa patient in training set was calculated by 

    
PI j

Estimated = β̂  j
T X j

Training  (6) 

The predicted Prognostic Index for an Ull patient in test was calculated by sum of weighted 
expression for each gene in test dataset by the corresponding coefficient for the same gene 
estimated from training data: 

    
PI j

Pr edicted = β̂  j
T X j

Test  (7) 

 
Model evaluation: proportion of variation explained (PVE) 
 
Comparable with the R2 in regression modeling, the importance of covariates in the Cox model 
can be quantified using the proportion of variation explained in the outcome variable (PVE) [28] 
by one or more covariates: 
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where n denotes total sample size. The relative importance of a covariate in a multivariate Cox 
model was measured by the partial PVE, which was calculated as the different of  for the full 
model and  for a model with a factor of interest excluded.  
 
 
Model evaluation: concordance index (C-index) 
 
The concordance index (C-index) [29] is a widely accepted measurement for predictive 
discrimination of a given model. In survival analysis, it is a generalization of the area under the 
receiver operating characteristic (ROC) curve, and it measures the probability of concordance 
between the predicted and observed responses in terms of lengths of survival of any two patients: 

  
C − index =

1{ri > rj}i, j∈Ω∑
|Ω |

 

where ri and rj  are the predicted risk for ith and jth patient; respectively. Ω is a set of all possible 
pairs of patients, at least one of whom has experienced an event and  time to event ti < tj. If the 
predicted risk is larger for the patient who lived shorter, the predictions for that pair are said to 
be concordant with the outcomes. The C-index is ranging from 0 to 1. The larger C-index, the 
better is the predictability of a survival model. 
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V. Supplementary Results:  
 
Evaluation on the training set for systemic relapse as clinical endpoint 
 
The estimated Prognostic Index for each MicMa patient in training set was calculated by model 
6. It should be emphasized that the results on the training set should not be interpreted as more 
than a preliminary screening of the model applicability. The performance of the model on the 
training set was examined as follows. The estimated prognostic index for each training patient 
was obtained by weighted sum of the expression values of corresponding genes in each gene set 
in training set (formula 6). Hierarchical clustering using Spearman correlation and average 
linkage performed on the estimated PIs from all gene sets revealed two distinct risk groups, 
namely: high-risk and low-risk group (Figure S2A) associated with significantly different 
survival probabilities (χ2 = 49.7, df = 1, p < 0.001) (Figure S2B). The median survival time, 
where half of the subjects have reached the event of interest, was not observed in the low-risk 
group, while the high-risk group had a 47.2 month median survival time. Distinct clinical 
characteristics were observed in the two risk clusters: a total of 30 out of 49 Luminal A tumors 
(61%) were clustered in the low risk group, and 19 luminal A tumors (39%) were found in the 
high risk group (Table 2). The results suggested that the two risk groups derived from the 
estimated prognostic indices had distinct survival patterns on the training set.  
 

Table 2.  Clinical characteristics for risk groups resulting from hierarchical clustering of 
estimated PI matrix on training set. 

 Low risk High risk 
Number of patients 63 55 
Event 4 34 
Median survival (month) - 47.2 
LumA (%) 30/49 (61) 19/49 (39) 
Basal (%) 9/16 (56) 7/16 (44) 
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Results summary: analysis for breast cancer specific death as clinical endpoint 

 

1. PCA summary for endpoint breast cancer specific death 

Standard deviations: 
0.41 0.18 0.11 0.09 0.06 0.06 0.05 0.03 0.02 0.02 
 
Rotation: 
           PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8   PC9  PC10 
RS        0.24 -0.18  0.11 -0.16  0.75  0.50  0.08 -0.23  0.07 -0.05 
SD        0.10  0.05  0.81 -0.24 -0.32  0.29 -0.27  0.09  0.01  0.02 
AMST      0.54 -0.23  0.19  0.78 -0.07 -0.03  0.09  0.01  0.00  0.02 
ROT       0.26  0.93 -0.10  0.14  0.07  0.17 -0.06 -0.07 -0.04  0.02 
Grade     0.41 -0.10 -0.31 -0.22  0.00  0.15 -0.18  0.78 -0.09  0.00 
Robust    0.50 -0.15 -0.32 -0.33 -0.44  0.09 -0.05 -0.54 -0.01  0.10 
Hypoxia   0.13  0.10  0.16 -0.22 -0.13 -0.01  0.93  0.15 -0.05  0.00 
Stem      0.06  0.04  0.00 -0.04  0.03 -0.10  0.01  0.09  0.89  0.44 
Intrinsic 0.35  0.07  0.24 -0.27  0.34 -0.76 -0.12 -0.05 -0.17  0.08 
WR        0.12  0.04  0.00 -0.05 -0.06 -0.12 -0.02 -0.01  0.41 -0.89 
 
Importance of components: 
                        PC1  PC2  PC3  PC4  PC5  PC6  PC7  PC8  PC9 PC10 
Standard deviation     0.41 0.18 0.11 0.09 0.06 0.06 0.05 0.03 0.02 0.02 
Proportion of Variance 0.73 0.14 0.05 0.04 0.01 0.01 0.01 0.00 0.00 0.00 
Cumulative Proportion  0.73 0.87 0.92 0.96 0.97 0.98 0.99 1.00 1.00 1.00 
 
Projected scores of test patients on PCs: 
              PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8   PC9  PC10 
ULL_002     -0.17  0.12 -0.15  0.04  0.01 -0.01  0.00  0.03  0.00  0.02 
ULL_007     -0.05 -0.04 -0.14  0.02 -0.05 -0.01  0.01 -0.03  0.02 -0.01 
ULL_011      0.24  0.29 -0.18  0.09  0.02  0.02  0.01 -0.01  0.00 -0.01 
ULL_013     -0.23  0.11  0.19  0.13  0.04 -0.04  0.07 -0.02  0.03  0.02 
ULL_014     -0.19 -0.12 -0.07 -0.05 -0.05 -0.01  0.04  0.02 -0.01  0.00 
ULL_016     -0.12 -0.02 -0.05 -0.16  0.01  0.02 -0.04  0.02  0.02  0.01 
ULL_019      0.03  0.20 -0.12  0.06  0.10  0.09 -0.08  0.04  0.05  0.00 
ULL_020     -0.24  0.24 -0.18 -0.02  0.03 -0.01  0.00  0.00 -0.01 -0.01 
ULL_022     -0.23 -0.06 -0.25  0.00  0.07 -0.09 -0.06 -0.05  0.01  0.01 
ULL_023      0.39 -0.04 -0.09  0.11  0.05  0.10  0.02 -0.02  0.02 -0.03 
ULL_024     -0.18  0.14  0.01  0.23  0.01  0.01 -0.08 -0.02 -0.03  0.02 
ULL_026      0.57  0.16  0.06  0.00  0.05  0.01 -0.06  0.02 -0.01  0.02 
ULL_027     -0.05 -0.11 -0.03  0.04  0.02 -0.08  0.03 -0.02 -0.01  0.00 
ULL_028     -0.17 -0.07 -0.18  0.04  0.03 -0.06 -0.01 -0.01  0.01  0.01 
ULL_031     -0.35  0.10  0.16  0.03  0.00 -0.02 -0.05  0.01  0.05  0.01 
ULL_036     -0.41 -0.15 -0.09  0.11 -0.02  0.06  0.05 -0.03  0.00  0.00 
ULL_037     -0.51 -0.13 -0.10 -0.02  0.01 -0.02  0.02  0.03 -0.02  0.00 
ULL_038      0.38 -0.24 -0.06  0.08 -0.01 -0.11  0.07  0.04  0.02  0.00 
ULL_044     -0.05 -0.36 -0.11 -0.04 -0.01 -0.02 -0.07  0.02  0.01  0.01 
ULL_046     -0.06  0.03  0.04  0.02 -0.03  0.08  0.04 -0.04 -0.03  0.02 
ULL_048     -0.34 -0.17 -0.04  0.04 -0.01 -0.07  0.03 -0.04  0.01  0.03 
ULL_053      0.22 -0.37 -0.06 -0.04  0.06 -0.02  0.06 -0.03  0.00  0.01 
ULL_055     -0.75  0.12  0.08 -0.06  0.03 -0.08  0.00  0.01 -0.02 -0.02 
ULL_056      0.32  0.29 -0.07 -0.10 -0.07  0.04  0.12  0.00 -0.02 -0.02 
ULL_057      0.70  0.21  0.06 -0.11 -0.06  0.00 -0.01  0.00  0.00  0.00 
ULL_060     -0.20  0.25 -0.12 -0.15 -0.06 -0.05 -0.01 -0.03  0.02 -0.03 
ULL_062     -0.65  0.11  0.28  0.12 -0.04  0.09  0.05  0.03  0.02 -0.01 
ULL_063     -0.26  0.25  0.07 -0.03 -0.06  0.02  0.03  0.01 -0.02  0.00 
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ULL_065      0.95  0.11  0.20 -0.01 -0.09 -0.03 -0.01  0.03  0.02 -0.01 
ULL_066      0.30  0.07 -0.06 -0.11 -0.12  0.04 -0.08 -0.01 -0.01  0.00 
ULL_067      0.12 -0.55  0.01 -0.04 -0.05  0.04 -0.05 -0.02  0.02  0.00 
ULL_069      0.30  0.00 -0.02  0.00 -0.06  0.01  0.08  0.00 -0.03  0.01 
ULL_071      0.62  0.09  0.05 -0.08  0.13  0.09 -0.08 -0.04  0.00 -0.01 
ULL_072      0.11  0.01 -0.01 -0.06 -0.04  0.03 -0.04  0.00  0.02 -0.01 
ULL_074     -0.61  0.08  0.08 -0.11 -0.09  0.00  0.01 -0.03  0.02  0.01 
ULL_075      0.25 -0.33  0.00 -0.04  0.08 -0.03 -0.03  0.02 -0.02  0.00 
ULL_079     -0.25  0.02 -0.05  0.04 -0.20 -0.01  0.02 -0.02  0.03  0.00 
ULL_080      0.39  0.02 -0.04 -0.24  0.05  0.02 -0.04  0.06  0.01  0.01 
ULL_083      0.81 -0.15  0.22  0.03  0.05  0.02  0.02 -0.04  0.01 -0.03 
ULL_085     -0.15 -0.14  0.07  0.06  0.04  0.02  0.02 -0.03  0.01  0.01 
ULL_087      0.23  0.06 -0.05 -0.08  0.05  0.06  0.08 -0.06  0.03 -0.01 
ULL_088     -0.23  0.06  0.08 -0.05  0.00 -0.01  0.04 -0.01  0.00  0.04 
ULL_096      0.84 -0.14  0.16 -0.02 -0.05  0.04  0.07 -0.02  0.00  0.01 
ULL_097     -0.40  0.07  0.02  0.05  0.02  0.00  0.05 -0.01  0.02  0.02 
ULL_099      0.38 -0.06 -0.03 -0.03  0.02  0.01 -0.01  0.04 -0.03  0.02 
ULL_101      0.40  0.06  0.08  0.09  0.07 -0.12  0.03  0.05 -0.02 -0.01 
ULL_105      0.11 -0.03  0.23  0.13 -0.02  0.02 -0.09 -0.01 -0.03  0.01 
ULL_107     -0.29  0.04  0.01  0.08  0.01 -0.05 -0.04  0.02 -0.01 -0.02 
ULL_111     -0.14  0.04 -0.11  0.02 -0.07  0.11  0.02  0.01 -0.02 -0.03 
ULL_112     -0.50  0.14  0.02  0.12 -0.07  0.01  0.05  0.03 -0.02  0.00 
ULL_113      0.34  0.04 -0.16 -0.05 -0.01 -0.07 -0.02  0.04  0.01 -0.02 
ULL_122     -0.07  0.28 -0.12  0.05 -0.05 -0.06  0.03 -0.02  0.00  0.00 
ULL_123      0.15  0.07 -0.06  0.29  0.05  0.06  0.00  0.03  0.00  0.02 
ULL_132      0.15  0.02  0.07  0.00  0.01 -0.17 -0.03 -0.01 -0.01 -0.03 
ULL_134     -0.28  0.06  0.13  0.04 -0.01 -0.07 -0.08 -0.04  0.00  0.01 
ULL_135     -0.27 -0.17  0.13  0.03  0.03  0.03 -0.03 -0.01  0.00 -0.01 
ULL_136     -0.42  0.10  0.09 -0.03  0.08 -0.01  0.02  0.04  0.03  0.01 
ULL_138     -0.30 -0.44  0.02 -0.04  0.01  0.03  0.04  0.02 -0.03 -0.01 
ULL_139      0.33 -0.04  0.06  0.05  0.03  0.04  0.07  0.08  0.01 -0.01 
ULL_143      0.12  0.01 -0.09  0.05 -0.01 -0.03 -0.03  0.02 -0.02  0.00 
ULL_144     -0.45  0.03  0.11  0.01  0.00 -0.06 -0.02  0.02  0.01 -0.02 
ULL_150     -0.35 -0.07 -0.13  0.07 -0.04  0.06 -0.03  0.01 -0.01 -0.02 
ULL_165      0.31 -0.01 -0.08  0.06 -0.10  0.01 -0.06  0.02  0.05  0.01 
ULL_167      0.63  0.30 -0.05 -0.10  0.05  0.00  0.04 -0.03 -0.02  0.01 
ULL_168     -0.36  0.16 -0.04  0.08  0.02  0.04 -0.04 -0.02  0.00 -0.02 
ULL_169      0.34  0.06  0.03 -0.12  0.14  0.00  0.06 -0.04  0.02  0.00 
ULL_176     -0.37  0.27  0.10 -0.03  0.07  0.02 -0.05 -0.05 -0.03 -0.02 
ULL_177      1.03 -0.10  0.12 -0.05 -0.13 -0.10 -0.05 -0.01  0.00  0.01 
ULL_181     -0.20  0.24  0.04  0.03  0.01 -0.07  0.02  0.00  0.00  0.01 
ULL_183      0.03 -0.27  0.03 -0.04  0.00  0.00 -0.09 -0.02 -0.02 -0.01 
ULL_184      0.09 -0.12  0.00  0.04  0.04 -0.02  0.05 -0.01  0.01 -0.02 
ULL_188      0.83  0.14 -0.05  0.14  0.02  0.12 -0.05  0.01 -0.01  0.01 
ULL_190     -0.25 -0.33  0.04 -0.04 -0.04  0.05 -0.01  0.02  0.01  0.00 
ULL_199     -0.40 -0.19  0.01 -0.05  0.02  0.05 -0.01 -0.01 -0.03  0.00 
ULL_201     -0.25  0.03 -0.08 -0.18 -0.04  0.12  0.01  0.04  0.01  0.03 
ULL_202      0.37  0.06  0.02 -0.05  0.07 -0.03  0.09  0.02 -0.01  0.01 
ULL_214     -0.09  0.05 -0.06 -0.05  0.00 -0.01  0.03 -0.01 -0.03  0.03 
ULL_216     -0.06  0.22  0.08 -0.05 -0.02 -0.04 -0.06  0.00 -0.02 -0.01 
ULL_222     -0.44 -0.31  0.08  0.00  0.00  0.06  0.00 -0.01 -0.01 -0.01 
ULL_230      0.12 -0.30 -0.11  0.09  0.03 -0.05  0.03  0.00  0.00 -0.01 
DNR_N_AO100 -1.14  0.06  0.15 -0.27  0.08  0.02 -0.01  0.03  0.00  0.00 
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 2. Univariate analysis of Combined PI-risk predictor for BC specific death.  

 
Univariate Cox model incorporating the dichotomized combined-PI as predictor 
 
coxph(formula = Surv(time, event == 1) ~ combined_PI, data = tmp) 
 
n= 77, number of events= 30  
   (4 observations deleted due to missingness) 
 
                        coef exp(coef) se(coef)     z Pr(>|z|)    
combined_PI:high risk 1.2130    3.3636   0.4012 3.024   0.0025 ** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
                      exp(coef) exp(-coef) lower .95 upper .95 
combined_PI:high risk     3.364     0.2973     1.532     7.384 
 
Rsquare= 0.124   (max possible= 0.955 ) 
Likelihood ratio test= 10.16  on 1 df,   p=0.001436 
Wald test            = 9.14  on 1 df,   p=0.002499 
Score (logrank) test = 10.26  on 1 df,   p=0.001357 
  
Test proportional hazards assumption for individual univariate Cox models reported in the univariate 
comparison part 

 
$combined_PI	   

                         rho chisq     p 
combined_PI:high risk 0.0766 0.175 0.676 

$tumorSize  
                     rho  chisq     p 
tumorSizepT2     -0.0793 0.1851 0.667 
tumorSizepT3-pT4 -0.0280 0.0228 0.880 
GLOBAL                NA 0.2558 0.880 

$histoGrade 
              rho chisq      p 
histoGrade2 0.343  3.56 0.0593 
histoGrade3 0.233  1.63 0.2012 
GLOBAL         NA  4.78 0.0916 

$TP53 
               rho chisq     p 
TP53mutation -0.22  1.33 0.249 

$node 
                rho chisq     p 
nodepN1      0.0845 0.209 0.647 
nodepN2-pN3 -0.0775 0.169 0.681 
nodeOther   -0.0781 0.172 0.679 
GLOBAL           NA 0.718 0.869 

$ER 
             rho chisq      p 
ERpositive 0.495  6.32 0.0119 

$stage 
           rho  chisq     p 
stage2 -0.0548 0.0743 0.785 
stage3 -0.0696 0.1184 0.731 
stage4  0.1268 0.4121 0.521 
GLOBAL      NA 1.7342 0.629 

$AOL_risk 
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            rho chisq     p 
AOL_risk 0.0565 0.075 0.784 

$RS 
       rho chisq    p 
RS1 -0.164  0.77 0.38 

$SD 
       rho chisq      p 
SD1 -0.423  5.12 0.0236 

$AMST 
         rho  chisq     p 
AMST1 0.0306 0.0277 0.868 

$ROT 
        rho chisq     p 
ROT1 -0.213  1.29 0.257 

$Grade 
           rho    chisq     p 
Grade1 0.00343 0.000345 0.985 

$Robust 
            rho chisq     p 
Robust1 -0.0733 0.156 0.693 

$Hypoxia 
            rho chisq      p 
Hypoxia1 -0.347  3.38 0.0659 

$Stem 
         rho chisq     p 
Stem1 -0.136 0.529 0.467 

$Intrinsic 
              rho chisq     p 
Intrinsic1 0.0509 0.076 0.783 

$WR 
        rho chisq     p 
WR1 -0.0809 0.188 0.664 

 

Summary of univariate comparison 
 
            Deviance   PVE     p Cindex    HR HR_lowerCI HR_upperCI               type 
tumorSize      9.706 0.121 0.008  0.735    NA         NA         NA Clinical parameter 
histoGrade     0.759 0.010 0.684  0.539    NA         NA         NA Clinical parameter 
TP53           9.643 0.118 0.002  0.801 3.460      1.661      7.210 Clinical parameter 
node          10.266 0.125 0.016  0.603    NA         NA         NA Clinical parameter 
ER             0.510 0.007 0.475  0.373 0.753      0.349      1.626 Clinical parameter 
stage          4.927 0.074 0.177  0.670    NA         NA         NA Clinical parameter 
AOL_risk       1.417 0.020 0.234  0.684 2.198      0.517      9.353 Clinical parameter 
RS             5.822 0.073 0.016  0.735 2.473      1.155      5.293  GeneSet predictor 
SD             0.741 0.010 0.389  0.634 1.380      0.657      2.903  GeneSet predictor 
AMST           9.307 0.114 0.002  0.763 3.188      1.455      6.986  GeneSet predictor 
ROT            1.361 0.018 0.243  0.636 1.534      0.744      3.162  GeneSet predictor 
Grade          6.625 0.082 0.010  0.730 2.629      1.226      5.636  GeneSet predictor 
Robust         4.341 0.055 0.037  0.698 2.166      1.030      4.555  GeneSet predictor 
Hypoxia        3.208 0.041 0.073  0.702 1.929      0.936      3.977  GeneSet predictor 
Stem           0.172 0.002 0.679  0.557 1.164      0.567      2.389  GeneSet predictor 
Intrinsic      4.510 0.057 0.034  0.687 2.199      1.045      4.625  GeneSet predictor 
WR             4.369 0.055 0.037  0.699 2.161      1.039      4.497  GeneSet predictor 
combined_PI   10.159 0.124 0.001  0.768 3.364      1.532      7.384  GeneSet predictor 
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3. Multivariate analysis of Combined PI-risk predictor for BC death.  

Full model: Risk =  tumor size + node + TP53 + combined_PI + strata(ER) 
 
                        coef exp(coef) se(coef)     z     p 
tumorSize:pT2          0.766     2.151    0.665  1.15 0.250 
tumorSize:pT3-pT4      1.534     4.639    0.824  1.86 0.062 
node:pN1              -1.068     0.344    0.672 -1.59 0.110 
node:pN2-pN3           1.323     3.754    0.595  2.22 0.026 
node:Other             1.460     4.307    0.602  2.43 0.015 
TP53:mutation          1.436     4.202    0.697  2.06 0.039 
combined_PI:high risk  1.214     3.366    0.575  2.11 0.035 
 
Likelihood ratio test=36.2  on 7 df, p=6.57e-06  n= 68, number of events= 27  
   (13 observations deleted due to missingness) 
  
Correlation between TP53 & combined_PI predictor 
 
      low risk high risk 
  WT        39        21 
  Mut        1        19 
 
 Fisher's Exact Test for Count Data 
p-value = 3.049e-06 
alternative hypothesis: true odds ratio is not equal to 1  
95 percent confidence interval: 
    4.751341 1490.362021  
sample estimates: 
odds ratio  
  33.88675 
 
Model comparison by AIC and Analysis of Deviance:  
Full model vs Model 2 [Risk =  tumor size + node + TP53 + strata(ER)] 
 
>  stepAIC(model2) 
Start:  AIC=152.41 
Surv(time, event == 1) ~ tumorSize + node + TP53 + strata(ER) 
 
> stepAIC(model_full) 
Start:  AIC=149.96 
Surv(time, event == 1) ~ tumorSize + node + TP53 + combined_PI + strata(ER) 
 
Analysis of Deviance Table 
 Cox model: response is  Surv(time, event == 1) 
 Model 1: ~ tumorSize + node + TP53 + combined_PI + strata(ER) 
 Model 2: ~ tumorSize + node + TP53 + strata(ER) 
   loglik  Chisq Df P(>|Chi|)   
1 -67.982                       
2 -70.203 4.4426  1   0.03505 * 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Model selection by AIC: 
> stepAIC(model_full, direction = "both") 
Start:  AIC=149.96 
Surv(time, event == 1) ~ tumorSize + node + TP53 + combined_PI + strata(ER) 
              Df    AIC 
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- tumorSize    2 149.67 
<none>           149.96 
- combined_PI  1 152.41 
- TP53         1 152.85 
- node         3 159.63 
 
Step:  AIC=149.67 
Surv(time, event == 1) ~ node + TP53 + combined_PI + strata(ER) 
              Df    AIC 
<none>           149.67 
+ tumorSize    2 149.96 
- TP53         1 150.68 
- combined_PI  1 155.25 
- node         3 158.79 
 
Final model: Risk = node + TP53 + combined_PI + strata(ER) 
 
  n= 68, number of events= 27  
 
                         coef exp(coef) se(coef)      z Pr(>|z|)    
node:pN1              -0.8592    0.4235   0.6520 -1.318  0.18756    
node:pN2-pN3           1.5807    4.8586   0.5757  2.746  0.00603 ** 
node:Other             1.3127    3.7161   0.5848  2.245  0.02479 *  
TP53:mutation          0.9547    2.5980   0.5593  1.707  0.08783 .  
combined_PI:high risk  1.5307    4.6215   0.5487  2.790  0.00527 ** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
                      exp(coef) exp(-coef) lower .95 upper .95 
node:pN1                 0.4235     2.3613     0.118     1.520 
node:pN2-pN3             4.8586     0.2058     1.572    15.015 
node:Other               3.7161     0.2691     1.181    11.691 
TP53:mutation            2.5980     0.3849     0.868     7.776 
combined_PI:high risk    4.6215     0.2164     1.577    13.546 
 
Rsquare= 0.38   (max possible= 0.921) 
Likelihood ratio test= 32.52  on 5 df,   p=4.697e-06 
Wald test            = 27.56  on 5 df,   p=4.432e-05 
Score (logrank) test = 32.92  on 5 df,   p=3.907e-06 
 
Test proportional hazards assumption on the final model 
  
                          rho  chisq      p 
node:pN1               0.3320 3.0558 0.0804 
node:pN2-pN3           0.1685 0.8135 0.3671 
node:Other            -0.0485 0.0725 0.7878 
TP53:mutation          0.0460 0.0421 0.8374 
combined_PI:high risk  0.2846 2.9546 0.0856 
GLOBAL                     NA 7.6262 0.1781 
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