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SI Methods
Increasing the Size of the Matrix. In Fig. 1B, at 4 d the ratio of
motile to nonmotile increased with the diffusion coefficient of
the motile strain, DM, and then declined as DM increased. We
suggested that this decline is “an artifact of the Neumann (zero
flux) boundary condition used in the simulation” and this effect
would not be obtained if the simulated Petri dish was larger.
Support for this suggestion can be seen in Fig. S1, where the size
of the matrix is fourfold greater than that in Fig. 1.

Random Distribution of Cells. In Fig. 3 we presented experimental
evidence that even when the populations are initiated with
a random distribution of motile (M) and nonmotile (N) cells, in
the physically structured (agar) habitat the motile cells would
have an advantage over the nonmotile ones. Whereas this is also
the case for the PDE model, the advantage of the motile strain in
the simulations is not as great as that observed in our experiments.
This can be seen in Fig. S2A. When the M and N cells are
randomly dispersed throughout the matrix, the motile cells have
only a modest advantage. The reason for this is that it there is
little competition between the N and M cells for some time. The
motile cells have a greater advantage over the nonmotile cells,
when 50 cells of each type are distributed as pairs (Fig. S2B).

Numerical Scheme to Solve the System of Partial Differential
Equations and its Stability and Convergence. In this section we
present our numerical scheme to numerically solve the system of
nonlinear partial differential equations and prove that the scheme
is stable and converges to the actual solution. We use an implicit
scheme, similar in spirit to the backward Euler scheme used to
solve ordinary differential equations (ODEs). The well-known
explicit Euler scheme to solve the ODE y′= f (t, y) with time step
τ is yn+1 = yn + τf(tn, yn). The right-hand side is simply evaluated
at time step n and determines the numerical approximation yn+1
at time step n + 1. Although easy to implement, such methods
have a critical time step size, frequently quite small, above which
numerical instabilities and unreliable results manifest. The im-
plicit or backward Euler scheme is yn+1 = yn+τf(tn+1, yn+1).
Note that yn+1 appears on both sides of the equation and thus
requires using a numerical method to estimate. Although more
complicated and costly to implement, implicit schemes in general
tend to produce reliable results for large step sizes τ.
Numerical scheme. We discretize the system of partial differential
equations
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in time and space. The time steps are of the form tn = nτ where
τ > 0 and the grid points on the “Petri dish” are of the form (ih,
jh), where h > 0 and i, j = 0, . . . , S.
We use a backward Euler scheme to discretize the time de-

rivative in each of the three PDEs as follows:

∂u
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≈
unþ1 − un

τ
:

We also use a second-order central difference scheme to dis-
cretize the Laplacian operator (sum of second partial derivatives)
in each of the three PDEs as follows:
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:

Here δ denotes an operator and not a number.
Let λM = DMτ/h2, λN = DNτ/h2, where M and N denote motile

and nonmotile strains, not indexes. We discretize Eqs. S1 and S2 by
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Note that at time (n + 1)τ, the quantities bnM;i;j; b
n
N;i;j, and rni;j have

already been computed.
To discretize Eq. S3, we replace the nonlinear Monod growth

term
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at time (n + 1)τ by its linearization and obtain
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where λr = Drτ/h2 and i, j = 1, . . . , S − 1. Note that the dis-
cretized equations at time (n + 1)τ are linear in bM, bN, and r.
We now incorporate the Neumann boundary conditions, cor-

responding to zero flux of bacteria or nutrient in out of the Petri
dish, for bM, bN, and r in discretized form. For bM, this yields the
following system of linear equations:8>>>><>>>>:
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[S6]

The equations for bN and r are similar.
Combining all of the discretizations yields a linear system of

equations that can be succinctly written as

An
Mbnþ1

M ¼ lnM
An
Nb

nþ1
N ¼ lnN

An
r r

nþ1 ¼ lnr :
[S7]

The three matrices An
∗ on the left-hand side and the three vectors

ln∗ on the right-hand side are all given at time nτ, whereas the
three vectors bn∗ on the left-hand sides are considered unknowns.
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Weuse well-known numerical linear algebra techniques (1) that
enable us to assume that the matrices are symmetric and positive.
The matrices are also sparse, having only nonzero elements on
the three block diagonals. We use the very fast conjugate gradi-
ent (CG) method to solve the linear systems, exploiting the
sparsity. The implementation of the CG method with MatLab is
so fast that preconditioning is unnecessary at these resolutions.
Stability and convergence. To guarantee a reliable numerical result
using an explicit scheme requires choosing the time step τ to be of
the order of h2. If h is small, this has huge computational cost
and there are potentially serious problems with round-off errors.
Our implicit scheme avoids this problem and provides a reliable
result with large τ.
We first prove that our algorithm for computing bM and bN is

stable (1), in the sense that the errors made at one time step of
the calculation do not cause the errors to increase as the com-
putations are continued. Von Neumann introduced a procedure
to verify the stability of finite difference schemes for linear sys-
tems of PDEs. Even though Eqs. S1 and S2 are not linear, at
each time step our algorithm fixes the nonlinear Monod term
and thus the equations are linear in bM and bN. This result en-
ables us deduce stability via the Von Neumann method (1).

Theorem 0.0.1. Our numerical scheme for solving Eqs. S1 and
S2 is unconditionally stable; i.e., the choice of τ is independent of h.
Proof. We closely follow the procedure in ref. 1. Our dis-

cretization of Eq. S1 is
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M;i;j þ
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!
bnþ1
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Taking the spatial discrete Fourier transform of both sides yields
the following expression for the Von Neumann amplification
factor ρ,
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where bbnþ1
M ðε; ηÞ ¼ ρðε; ηÞbbnMðε; ηÞ, and thus the amplitude of

each frequency in the solution, given by bbnMðε; ηÞ, is amplified
by ρðε; ηÞ in one time step. Because α < 1, the Monod term

f ðrÞ ¼ αr
kþ r

≤ 1;

and thus

jρj ≤ 1=ð1− τÞ ¼ 1− τþO
�
τ2
�
:

It follows fromVon Neumann stability analysis that this scheme is
unconditionally stable. A similar argument proves that the nu-
merical scheme for Eq. S2 is also unconditionally stable.
We cannot use the above technique to treat Eq. S3 as a linear

PDE in r and must deal directly with the nonlinearity. For this
PDE we prove that the sup or ℓ∞ norm of the numerical solutions
are decreasing in time. We need the following lemma.
Lemma 0.0.2. Consider the ordinary differential equation

du
dt

¼ − f ðuÞ;  f ðuÞ ¼ u
kþ u

;

where k is a positive constant. Discretize this ODE as

unþ1 ¼ un − τ
�
f ðunÞ þ f ′ðunÞ�unþ1 − un

�	
: [S8]

If un ≥ 0 for any time nτ, then un+1 ≤ un.
Proof. We write

unþ1 − un − τf ðunÞ þ τf ′
�
un
�
un

1þ τf ′ðunÞ ¼ un −  
τf ðunÞ

1þ τf ′ðunÞ:

Because τ > 0, f(un) ≥ 0, and f′(un) > 0, it easily follows that
un+1 ≤ un.
We now prove the monotonicity statement.

Theorem 0.0.3. For the discretization of Eq. S3, if rni;j ≥ 0 for any
i, j, n, then

max
i;j

rnþ1
i;j ≤ max

i;j
rni;j:

Thus, the sup norm of the numerical solutions are decreasing in
time.
Proof. Assume that for ði; jÞ ¼ ðs; tÞ; rnþ1
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Recalling that
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and because rnþ1
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i;j and λr > 0, it follows that
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This result implies that
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���
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It follows from Lemma 0.2 that

rnþ1
s;t ≤ rns;t:

Because rns;t ≤ max
i;j

rni;j, we conclude that

max
i;j

rnþ1
i;j ≤ max

i;j
rni;j:

Note that the hypothesis requires rni;j ≥ 0 for all i, j, n. Our al-
gorithm defines r to be 0 if it is below a very small threshold so
this requirement is satisfied. Therefore, we conclude that the
resource r at time (n + 1)τ is bounded by the value of r at time nτ.
Consistency is another key desired factor of a numerical al-

gorithm; it guarantees that the smooth solution of the PDE is an
approximate solution of the finite difference scheme. We now
give the mathematical definition of consistency (1). We write
a system of PDEs in compact form Pu = f, where P is a matrix
containing partial derivatives.
Definition 1. Given a PDE Pu = f and a finite difference

scheme, Pk,h
v = fk,h, the finite difference scheme is consistent

with the PDE if for any smooth function ɸ(t, x)

Pϕ−Pk;hϕ→0 as k; h→0:

Theorem 0.0.4. The discretized scheme of Eqs. S1–S3 is consistent.
Proof. For a smooth function ϕ(t, x), we use Taylor’s theorem

to write

ϕnþ1 −ϕn

τ
¼ ∂ϕn

∂t
þOðτÞ

and
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For PDE Eq. S1,

Pϕ ¼ ∂ϕ
∂t
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−
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with discretization
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Because αrni;j=ðrni;j þ kÞ is a constant for fixed r, and
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it follows that

Pϕ−Pk;hϕ ¼ O
�
τþ h2

�
→0 as k; h→0;

and thus we verified consistency for our numerical scheme to
solve Eq. S1. A similar argument applies to Eq. S2.
Let f ðϕÞ ¼ αϕ=ðϕþ kÞ. For PDE Eq. S3,
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with discretization
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and because ϕnþ1
i;j −ϕn

i;j ¼ τ∂ϕ
n
i;j

∂t þOðτ2Þ ¼ OðτÞ, it follows that

Pϕ−Pk;hϕ ¼ O
�
τþ h2

�
→0 as k; h→0:

The celebrated Lax–Richtmyer equivalence theorem (1) states
that stability and consistency imply the following desirable prop-
erty of the numerical solution:

Theorem 0.0.5. As τ and h approach 0, the numerical solutions
of Eqs. S1 and S2 converge to the actual solutions.
The proof of consistency shows that the convergence order is

one in time and two in space.
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Fig. S1. Simulation of competition between motile and nonmotile cells in homogenous habitats with two different levels of resource and a fourfold larger
matrix than in Fig. 1. Parameters: α = 0.90 h−1, k = 5.0 μg/mL, ν = 4.75 × 10−7 μg, and dt = 0.1 h−1. The computations used a grid size of 0.1 cm and the ratios were
computed at the tick marks shown. The ratio of motile to nonmotile cells is shown for different motile strain diffusion coefficients DM assuming DR = 3.6 × 10−3

and DN = 3.6 × 10−5 cm/h.
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Fig. S2. Simulated changes in the density of motile (blue) and nonmotile strains (red) in single-clone culture and ratio of motile/nonmotile cells (M/N in right
axis) in pairwise competition in 0.35% soft agar with r0 = 50 μg/mL, α = 0.90 h−1, k = 5.0 μg/mL, ν = 4.75 × 10−7 μg, and dt = 0.1 h−1. (A) Culture initiated with 50
randomly distributed M and 50 N cells. (B) Culture initiated with mixtures of 50 M and 50 N cells randomly distributed as pairs.
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