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SI Methods
Concentration Dependence of Fitness Function: Why Cubic Root? The
stoichiometric balance of protein concentrations in our model is
given by the conservation equation

Ci ¼ Fi þ ∑
7

j¼1
Fij: [S1]

For simplicity consider a well-evolved organism where functional
interactions dominate; i.e., KF

ij ≪K
NF
ij . Then most proteins are in

their functional form and we get

F1 ≈C1
F23 ≈C2 ≈C3
F45 þ F64 ≈C4
F45 þ F56 ≈C5
F46 þ F56 ≈C6:

[S2]

In this regime contributions to fitness function from dimers and
date trimers are

F23 ¼ 1
2
ðC2 þ C3Þ

F45F56F64 ¼ 1
8
ðC4 þ C5 −C6Þð−C4 þ C5 þ C6ÞðC4 −C5 þ C6Þ;

[S3]

which explains why the cubic root in fitness function Eq. 3 of the
main text is necessary to avoid bias that a priori favors one type
of complex over the other.

Solution for the Law of Mass Action (LMA) Equations. For simplicity,
proteins are modeled to form only monomers or dimers and all
of the higher-order protein complexes are ignored in this work.
The monomer concentrations of proteins, Fi were determined
by solving the following seven coupled nonlinear equations of
LMA (1, 2):

Fi ¼ Ci

1þ∑N
j¼1ðFj =KijÞ

for i ¼ 1; 2; . . . ;N; [S4]

where N is the number of proteins in the system (n= 7 for the ab
initio model and n = 3,868 for the proteomics simulation model)
and Kij defined in Eq. 8 (for the ab initio model) and Eqs. 5 and 6
(for the proteomics simulation model) of the text is the average
dissociation constant of all possible interactions between pro-
teins i and j. The concentration Dij of the dimer complex between
any pair of proteins is then given by the following LMA relations:

Dij ¼ FiFj

K ij
: [S5]

We solved seven coupled nonlinear equations of LMA using the
iteration method of refs. 1 and 2: The first iteration of Fi is
calculated by substituting Cj for Fj in the right-hand side of Eq.
S1. Each new iteration of Fi is then plugged into the right-hand
side of Eq. S1. The iterations are repeated until the maximum
relative deviation of the new values of Fi from the old ones drops
below 10−6.

Hydrophobicities of Evolved Proteins. To characterize the hydro-
phobicity of the amino acids in simulations we note that a 20 × 20
matrix of Miyazawa–Jernigan potentials, which correspond to the
propensities to find interactions among 20 different types of amino
acids, allow spectral decomposition with one type of eigenvalue
(3, 4); i.e., an element of the matrix describing interaction energy
between amino acids i and j can be presented as Eij = E0 = λqiqj,
where qi is an effective hydrophobicity index of an amino acid of
type i that ranges from qmin ∼ 0.125 (most hydrophilic, K) to qmax
∼ 0.333 (most hydrophobic, F). We rescaled the hydrophobicity
scale to fall into a (0, 1) interval: ~qi ¼ ðqi − qminÞ=ðqmax − qminÞ.
These values are presented in Table S1.

Propensities of 20 Amino Acids Constituting Functional Interfaces.
We defined the propensity, Pra to find an amino acid type a in
functional interfaces as

Pra ¼ ln
pa
p 0
a
; [S6]

where pa and p0a are the probabilities to find an amino acid type
a in sequence regions corresponding to functional interfaces and
all sequence, respectively.

PPI and Protein Abundance Data for S. cerevisiae. We downloaded
the genome-wide PPI network in baker’s yeast S. cerevisiae from
the BioGRID database (5, 6) and extracted all bait-to-prey pairs
of interacting proteins detected by the affinity capture fol-
lowed by mass spectrometry technique (designated as “Affinity
Capture-MS” in the database). A pair of interacting proteins was
then included in our “MS ≥ w” dataset if it was confirmed by at
least w independent mass spectrometric experiments. We also
obtained the protein expression levels of yeast proteins mea-
sured by Ghaemmaghami et al. (7). All proteins are classified
with respect to their protein copy numbers using log bins. Fig. 5D
shows the average degree of all proteins in the same concen-
tration bin in different MS ≥ w datasets: w = 1 (black symbols)
and 3 (red symbols).
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Fig. S1. Evolution of protein abundances and functional and nonfunctional protein–protein interactions. The curves represent total protein concentrations
(A), fractional concentrations of a protein forming nonfunctional complexes (B), and the probability to form a functional PPI complex (C). The color codes
represent functional monomer (protein 1, green), stable pair having one functional partner (proteins 2 and 3, red), and date triangle with two functional
partners (proteins 4, 5, and 6, blue). We designed initial sequences of six cell division controlling genes (CDCG) to have highly stable structures (Pnat > 0.8)
without regard for solubility of their surfaces, which resulted in mostly promiscuous nonfunctional binding of initial proteins with one another. Our population
dynamics simulation consists of two parts: the first three consecutive simulations to equilibrate proteins to have proper functional interfaces depending on
their functional requirements (20,000 simulation time steps each up to t = 60,000) and the last long-time production run simulation from t = 60,000 to t =
140,000, which corresponds to the simulation data presented in Fig. 2 in the main text. The vertical dotted lines partition different rounds of simulations. The
seeding genome for the next round of simulation is randomly picked out of the evolved organisms in the previous round of simulation (roughly mimicking
serial passage experiments), which explains the discontinuities at t = 20,000, 40,000, and 60,000. In all cases, the fraction of nonfunctional interactions of the
functional monomer most drastically drops at the early stages of each round of simulation. On the other hand, the variations of nonfunctional and functional
interactions of date triangle proteins are smaller than those of stable pair proteins. We averaged the curves over 100 different simulations for the first three
rounds of simulations and 200 different simulations for the last round of simulation.

Fig. S2. Effect of dosage increase on the formation of various complexes. Colors denote various types of states of a protein: monomer (red), homodimer in
head-to-head form that shares the same binding interface (green), homodimer in head-to-tail form where two participants use different binding interfaces
(blue), functional heterodimer (magenta), and promiscuous complexes with a random partner (cyan). The width of each strip corresponds to the fraction of
proteins in corresponding states/complexes in the cytoplasm of the model cell. The x-axis quantifies the level of overexpression relative to the wild-type
(evolved) concentration. (A) Functional monomer protein. (B) Stable pair functional dimer proteins. (C) Functional dimer proteins involved in the date triangle.
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Fig. S3. Causality of the correlation between evolved PNF-PPIs and concentrations for all types of proteins. As in Fig. 4B we plot here dependence of KNF
ij on

concentration of interacting protein(s). However, here we present a more detailed distribution of KNF
ij for all pairs of interacting protein types as a function of

concentration of the most abundant partner, max(Ci, Cj), to distinguish between dependence on node degree and concentration. hKNF
ij i represents the average

over all pairs of proteins of a particular type that fall into a given C bin. Different colors mark different types of pairs of interacting proteins sorted by the
parameter ki + kj − total node degree of an interacting pair of proteins i and j. For example ki + kj = 0 corresponds to homodimers of k = 1 proteins; ki + kj = 1
corresponds to interaction between a functional monomer and a functional dimer, ki + kj = 2 includes nonfunctional interactions (wrong surface and/or
orientation) between functional dimers and interactions between functional monomers and date triangles, etc. The green line describes the average over all
types as presented in Fig. 4B. It can be seen clearly that PNF-PPI strength is anticorrelated with protein abundances: More abundant proteins, being more
‘’dangerous’’ to the cell in terms of their PNF-PPIs, evolve to weaken them for all interacting pairs except, perhaps, PNF-PPIs between highest node degree
proteins where the ‘’frustration’’ effect limits their ability to evolve against PNF-PPIs.

Fig. S4. The probability, P(k) to find a protein having node degree k. The artificially made true PPI network for 3,868 proteins of baker’s yeast retains the
scale-free property of the original one.

Table S1. Hydrophobicity of evolved proteins

No. of PPI partners

Hydrophobicity per residue

Functional interface Nonbinding region Overall sequence

k = 0 NA 0.29 ± 0.02 0.29 ± 0.02
k = 1 0.50 ± 0.02 0.29 ± 0.03 0.36 ± 0.02
k = 2 0.49 ± 0.03 0.30 ± 0.05 0.43 ± 0.02

Average and SDs of relative normalized hydrophobicity per residue of each sequence region are shown. The
relative normalized hydrophobicity scales from 0 (most hydrophilic) to 1 (most hydrophobic). Averages and SDs
are calculated over protein orthologs from 152 representative strains as described in SI Methods.
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