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Methods 
 
1. Simulations 
Brownian diffusion simulations were performed using custom software written in 
LabVIEW 8.5 (National Instruments, Austin, TX). Simulated trajectories were saved as 
text files for further processing (see Data Analysis). A trajectory consisted of a 
succession of positions ( ){ }1

,i i i N
x y

≤ ≤
, where N is the number of positions in the trajectory. 

We used N = 1,000 and extracted subtrajectories when smaller number of positions were 
needed. The software was scriptable, which made it easy to generate large number NS of 
simulations for each set of parameters ( ), ,D t σΔ� . We used NS = 1,000 to obtain small 
statistical errors in the computation of averaged quantities such as the MSD or MSD SDV. 
For simulations without microsteps, the successive positions of a given trajectory were 
calculated according to the following algorithm: 
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where ( ),i ix y� � represents a position in the “real” trajectory (without localization 
uncertainty) and ( ),i ix y  the corresponding position in the “observed” one. In Eq. (M.1), 

( ) ( ), ~ 0, 2i ix y N D tΔ Δ Δ�  and ( ) ( ), ~ 0,i i Nχ η σ , where N(0, α) indicates a normal distribution 

with mean zero and standard deviation α and the symbol “~” indicates that the random 
variables to the left are distributed according to the probability distribution function to the 
right. We used LabVIEW’s default generator of normally distributed random numbers. 
For simulation with m microsteps between each position, each “real” trajectory position 
( ),i ix y� � was calculated following the algorithm described in Appendix C (Eq. (C.5)), 

where each ( ) ( ), ~ 0, 2i ix y N D tδΔ Δ �  and Δt = mδt. The “observed” trajectory ( ),i ix y  was 

obtained by adding random variables ( ) ( ), ~ 0,i i Nχ η σ to each position as before to account 
for localization uncertainty: 
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All the simulations results presented here were performed using no microsteps. 
 
2. Data Analysis 
Trajectory MSD curves and MSD fits were computed using custom software written in 
LabVIEW (AsteriX). The software is used routinely in our lab to track single particle 
trajectories and analyze the resulting trajectories according to different approaches 
(including MSD analysis)1. The software is scriptable, so that generating the MSD curve 
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of many trajectories is easy. Similarly, fitting a MSD curve with a variable number of 
fitting points and exporting the results in a single file can be scripted. Finally, the same 
software was used to compute the average values of terms in Eq. (D.9) corresponding to 
many trajectories, or other averaged quantities discussed in the text. 
Raw results of these analyses (MSD curve, fit parameters, etc) were exported as text files 
to be further processed in Origin 8.1 (OriginLab, Northampton, MA) and prepare figures 
for publication. Comparison of simulation results with theoretical results such as for the 
MSD SDV (Eq. (D.17)) or error on fitted parameters as a function of number of fitting 
points (Eq. (F.17), (F.19) and (F.23)), were performed in Origin using the code provided 
in Appendix G. 
 
Appendix A: Contribution of camera exposure to the localization error 
The effect of camera exposure on localization uncertainty is noticeable in the presence of 
diffusion or drift of either the particle itself or of the microscope setup. Here, we will 
address the effect of diffusion only, as this is the only regime studied in this article. For 
the derivation of this effect, we will not concern ourselves with subtleties arising from 
pixel size or camera noise, as they can easily be incorporated to the final result. 
Intuitively, the effect of diffusion is to broaden the PSF of the particle2. Since the 
localization uncertainty is typically proportional to the width of the PSF, we expect the 
uncertainty to increase with diffusion and exposure time tE. To quantify this effect, we 
model the localization procedure as a simple measure of the barycenter of the positions of 
all photons emitted during the exposure time. More sophisticated approaches based on 
PSF fitting would lead to identical results. 
We will suppose that the probe emits p detected photons during the exposure time tE. 
Limiting ourselves to a single axis, the barycenter coordinate is given by: 

 ( )

1

1 p
p

i
i

x x
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= ∑ , (A.1) 

where ( )p
ix are the photons individual coordinates (the subscript p standing for “photon”). 

Each photon’s measured coordinate depends on two phenomena: diffraction and diffusion. 
Due to diffraction, a probe located at a precise position (x(t), y(t)) will appear as an 
extended PSF, which therefore represents the probability density function (PDF) of each 
photon localization. Due to diffusion, a probe initially located at a position (x(t0), y(t0)) 
will move around during the integration time tE. The location of each photon can 
therefore be considered as the sum of two independent random variables: 
 ( ) ( ) ( )p m

i i ix x pξ= + , (A.2) 

where ( )m
ix is the coordinate of the molecule at time ti when the photon was detected (its 

PDF is governed by diffusion) and ( )p
iξ is a random variable distributed according to the 

PSF of the microscope and can be viewed as the coordinate of the photon in a frame 
attached to the moving particle. Eq. (A.1) can be rewritten: 
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 It is well known that the PSF of most microscopes can be satisfactorily approximated by 
a Gaussian function of standard deviation s0 given by: 
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 0 0.21s
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λ

= , (A.4) 

where λ is the emission wavelength and NA the numerical aperture of the objective lens. 
Therefore: 
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To compute the average position x , we need to express Eq. (A.3) in terms of 
independent random variables with known PDFs. Therefore we rewrite: 
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where the ( )m
ixδ are independent Gaussian-distributed random variables with variance: 

 i
( )( ) ( )1var 2 2m
i i ix D t t D tδ−= − =� � , (A.7) δ

where D is the diffusion coefficient and δti the time interval since the previous photon 
was detected: 
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The sum in Eq. (A.3) thus appears as a sum of independent Gaussian random variables of 
mean zero (we can assume without loss of generality that the position x0 of the molecule 
at time t0 is the origin, x0 = 0). Therefore, the average position is also Gaussian-
distributed with mean zero and variance s equal to the sum of all variances: 
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We now need to compute the average time t . In most cases, photon emission can be 
assumed to follow a Poisson process characterized by a constant emission rate R (in 
counts/s or cps), for which the interval between photons is distributed exponentially: 
 ( ) ( ).expi ip t R R tδ δ= − . (A.10) 
In this case, the mean time between photon: 
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is approximately distributed as a Gamma (or Erlang) law of parameters (p, 2R): 
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The mean and standard deviation of this distribution are: 
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This distribution is approximately Gaussian for p > 10, with a width which decreases 
rapidly for large number of photons, justifying using t  instead of t  in Eq. (A.9)1. We 
obtain that the combined effects of camera exposure tE and particle diffusion D�  is to 
increase the dimension of the PSF according to: 
 2

0 Es s Dt= + � . (A.14) 
The localization uncertainty (Eq. 4), being proportional to s, increases accordingly. These 
effects will start to be noticeable when D.tE > s0

2. In other words, to avoid added 
localization uncertainty due to diffusion, the exposure needs to be smaller than a critical 
value. For a particle of diameter much smaller than the diffraction limit, using typical 
values of λ = 520 nm and NA = 1.45, we have s0

2 = 5.7 10-3 µm2: 
 
D�  = 10-2 µm2/s → tE < 570 ms 
D�  = 10-1 µm2/s → tE < 57 ms 
D�  = 1 µm2/s → tE < 5.7 ms etc… 
 
For slowly diffusing molecules ( D�  < 10-2 µm2/s), this effect is negligible for most 
experiments (in which usually tE < 100 ms). It is only of concern for fast diffusing 
molecules ( D�  > 10-1 µm2/s), where the effect can be dominant. Note that in this case, the 
observed image of the particle will most likely depart significantly from a Gaussian 
intensity distribution anyway, further increasing the uncertainty on localization using 
standard fitting approaches. 
 
Until now, we have supposed that the particle’s diameter d is much smaller than the 
diffraction limit (typically d << 100 nm), in order to be able to model its PSF as a 
Gaussian with standard deviation s0 given by Eq. (A.4). This situation is appropriate for 
single fluorophore, single quantum dot or other small fluorescent nanoparticle or bead 
tracking. If this were not the case, our derivation would remain valid as long as the 
particle’s PSF could be modeled as a Gaussian with a standard deviation s0’, with s0’ 
replacing s0 in formula (A.5), (A.9) and (A.14) above. In case the particle’s PSF cannot 
be modeled by a Gaussian (which would for instance be the case for a fluorescent probe 
with dimension > 100 nm), the Gaussian probability distribution of photon location (A.5) 
would have to be replaced by a more appropriate probability distribution, equal to the 
convolution of the particle emission profile and the microscope PSF. 
 
The results obtained in this article in the absence of camera exposure effects are simply 
modified by replacing the PSF parameter s0 by s (Eq. (A.14)) in the formulas giving the 
localization uncertainty as a function of s0 (Eq. 2). 
 
Appendix B: Probability density function of the square displacement 
To compute the effect of localization uncertainty on the MSD, we decompose each 
square displacement corresponding to a time lag of nΔt in terms of independent random 
variables: 
                                                 
1 Note that if we do not assume the photons to be emitted according to a Poisson process, but simply 
emitted periodically at a frequency R, we still recover the same value for t . 
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where (xi, yi) and (xn+i, yn+i) are the measured coordinates of the particle at time iΔt and 
(n+i)Δt and the true coordinates of the particle are indicated by a tilde sign. Localization 
uncertainties on each coordinate are indicated by Greek letters and are supposed to be 
Gaussian distributed. For instance: 
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and identically for the ηk’s. We can rewrite Eq. (B.1) as: 
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where we have defined (see Fig. S5): 
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and C.T. indicates products of odd powers of uncorrelated random variables. The 
localization uncertainties are independent random variables, distributed as defined in Eq. 
(B.2), while the true distance n i id r r+= −

G G� � �  is distributed according to: 
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where we have introduced the notation: 
 4D tα = Δ�  (B.6) 
The angle φ’s probability density function (PDF) is uniform in [0, 2π]. By definition of 
the kth moments of 2

n i ir r+ −
G G : 
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where the joint probability of the random variables , , , , ,i n i i nd ϕ χ χ η η+ +
�  is given by: 
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For k = 1, it is easy to verify that the cross terms of Eq.(B.3) average out to zero, leaving: 
 2 24 4n i ir r Dn t nσ α ε+ − = Δ + = +

G G � , (B.9) 

where we have introduced the notation: 
 24ε σ= . (B.10) 
The mean of the MSD for a time lag nΔt follows immediately: 

 2 2 2

1 1

1 1K K

n n i i n i i n i i
i i

r r r r r r n
K K

ρ α ε+ + +
= =

= − = − = − =∑ ∑G G G G G G
+  (B.11) 

5/27 



Single-Particle Trajectory MSD Analysis: Supporting Information 

In other words, localization uncertainty introduces a constant offset ε = 4σ2 to the MSD 
curve. This result has already been established using different methods by several authors 
(e.g. 3-4). 
Using the same approach and slightly more lengthy algebra, one can verify that: 
 ( 24 2n i ir r n )α ε+ − = +

G G , (B.12) 

giving the variance of the square displacement (SD): 

 (
2 24 2

n i i n i ir r r r n )α ε+ +− − − = +
G G G G . (B.13) 

Note that the variance of the mean square displacement (MSD) is more complex to 
calculate. This calculation is described in Appendix D. 
Eq. (B.9) & (B.12) for the first two moments of the square displacement suggest that the 
PDF of the SD is actually: 
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for which one has: 
 (2 ! kk

n i ir r k n )α ε+ − = +
G G  (B.15) 

In other words, the PDF of the measured squared displacements is identical to that of the 
real square displacements (Eq. 10) with the simple addition of the offset ε = 4σ2. This can 
be easily verified by computing further moments of the SD, although the algebra 
becomes rapidly tedious. Using wxMaxima5, we verified Eq. (B.15) up to k = 4, strongly 
supporting this conclusion. Eq. (B.14) is also supported by simulations (data not shown). 
As pointed out by an anonymous reviewer, this result can alternatively be established 
using the properties of sums of normally distributed independent random variables. This 
is the approach used in ref. 6 to obtain the same result. We have presented this alternative 
approach as a mean to illustrate the calculations involved in the evaluation of the 
expressions of Eq. (D.9). 
 
Appendix C: Contribution of exposure time (or number of simulation microsteps) to 
the MSD curve offset 
This appendix is limited to diffusion taking place in one dimension. The results in N 
dimensions are simply multiplied by N. A similar derivation is sketched out in Goulian & 
Simon3 and used in Montiel et al.6 with a different interpretation. Savin & Doyle obtain 
the same result using an entirely different approach4. We detail it here because it is 
relevant for two different but practically important situations: 
 
(i) an image is acquired by collecting photons emitted by a single probe during an 
exposure time tE, equal or smaller than the frame duration Δt: 
 , 0Et t 1λ λ= Δ < ≤  (C.1) 
(ii) a simulation is performed by moving the probe in microsteps of duration δt, the 
number of microsteps per frame (of duration Δt) being m: 
 t m tδΔ =  (C.2) 
To simulate a finite exposure time, the position of the probe within a given frame is 
computed as the average position of a fraction λ of the m microsteps: 
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where the {Δxj}j=1…q-1 represent the random microsteps performed every δt and q = λm. 
For a pure Brownian motion, the Δxj are independent and Gaussian distributed: 
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where  is the probe’s diffusion coefficient and δij the Kronecker symbol. Note that for 
other types of motion, these assumptions may be incorrect. 

D�

The two situations are similar in the sense that the average position of the probe 
measured by the image integrated during the exposure tE is the limit when q = λm and m 
tend to infinity of the result obtained for the simulation situation. 
We will compute the average square displacement between points separated by a number 
k of frames, indicating the frame by a subscript in parenthesis. The measured positions in 
these two frames are: 
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where the position at the beginning of the exposure of frame k+1 can be obtained by 
recurrence by summing over all displacements during the previous frame: 
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The average square displacement is thus: 
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where the cross terms (C.T.) contain products ( ) ( )i l
j kx xΔ Δ  with i ≠ l or j ≠ k, whose average 

value is equal to zero according to Eq. (C.4). We can further simplify Eq. (C.9) by noting 
that the expansion of the squares results in similar products ( ) ( )i

j k
ix xΔ Δ , whose average 

value is equal to zero, unless j = k. The final result can be expressed as: 
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After some algebra, we obtain: 
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In other words, the MSD curve can be fitted with the usual linear equation to which a 
negative offset has been added due to averaging of the position during the finite exposure: 
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which is the result obtained by Goulian & Simon3, for N = 1 dimensions. Montiel et al.6. 
interpret this result as meaning that the apparent diffusion coefficient measured from the 
first two points of the MSD curve is: 
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whereas we have just seen that this is not the case, but instead means that the MSD curve 
needs to be fitted with an offset, the expected fitted diffusion constant being the true one. 
For actual imaging experiments, there is no microstep to speak of and the correct limit is 
m → ∞, q = λm → ∞: 

 ( ) 22 2
3 3 Et Dt D t Dt Dρ λ= − Δ = −� � � 2 t� , (C.14) 

which is the result obtain by Savin & Doyle using a different approach. 
For simulations which use no microsteps (q = m = 1) or use microsteps but only use the 
final position (or any other microstep position) to localize the particle within a frame (q = 
1, m > 1), the offset disappears (q = 1 in Eq. (C.12)). However, for simulations using a 
finite number of microsteps and computing the particle position as the average of many 
(or all) microstep positions (m ≥ q > 1), Eq. (C.12) applies and 

 ( ) 2 2

12 1 2
3

t NDt ND
m

λρ
λ

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

� tΔ� , (C.15) 

which, for large enough m, reduces to Eq. (C.14). We have reintroduced the number of 
spatial dimensions, N, in the final result. 
There are two take-home messages coming out of this derivation: 
 
(i) For real measurements, it is important to know the ratio of exposure time to frame 
duration, λ = tE/Δt. Whatever this value is, a negative offset will result in the MSD curve 
given by the last term of Eq. (C.14). Proper fitting to obtain an unbiased diffusion 
constant requires including this offset (and that due to localization uncertainty discussed 
in Appendix B). This offset will have a particular importance for large diffusion 
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coefficients. For small diffusion constants, it might be dwarfed by the localization 
uncertainty term 2σ2 (for N = 1 dimension) and omission of this negative offset might not 
bias the results much. For instance, for a typical uncertainty of 30 nm, a value λ = 1 and 
frame duration Δt = 100 ms: 

 

2 3

2 2

2 1.18 10 μm
2 6.7 10 μm
3 EDt D

σ −

−

=

=�

2

, 

where  is expressed in µm2/s. For D  << 10-2 µm2/s, the effect of the exposure offset 
will be negligible and both the recovered σ and  values will be negligibly biased by its 
omission. However, for smaller localization uncertainty or longer exposure time, the 
effect of neglecting the exposure offset will be felt for much smaller ’s. 

D� �
D�

D�
 
(ii) For simulations, it appears that it is not equivalent to simulate trajectories using a 
single Gaussian-distributed step of variance 2 Δt or multiple Gaussian-distributed 
microsteps (m) with variance 2 Δt/m, as far as the MSD curve is concerned, unless one 
uses a single microstep position to report the position of the particle within a frame. 
Indeed, in the first case (single microstep), one will not observe any negative offset, 
whereas in the latter and if the reported location of the particle is obtained by averaging 
several microstep positions, a negative offset will be observed, given by Eq. 

D�
D�

(C.15). In 
other words, simulations that use microsteps to be able to handle boundary conditions 
should be used carefully. In general, it appears best to compute the location of the particle 
within a frame as an average of all the microstep locations during that frame. 
 
Appendix D: Standard deviation of the mean square displacement 
Qian et al. have computed the SDV of the mean square displacement ρn in the absence of 
localization uncertainty7. Although this result is a useful starting point, it is insufficient 
when the uncertainty becomes comparable to the elementary displacement (the average 
displacement taking place during one frame duration). 
Defining2: 
 K N n= − , (D.1) 
and the standard deviation σn of the MSD ρn at time lag tn = nΔt by: 
 22 2

n n nσ ρ ρ= − . (D.2) 
Using the standard definition of nρ , Eq. 7: 

 

2
22

1

1 24 2
2

1 1

1

1 2

K

n n i i
i

K i

n i i n i i n j j
i j

r r
K

r r r r r r
K K

ρ +
=

−

+ +
= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

= − + − −

∑

∑∑

G G

G G G G G G
+

                                                

. (D.3) 

Computation of the average terms in Eq. (D.3) is subtle because of the localization 
uncertainty and the correlation between average displacements. We have already 
calculated the first term in Appendix B (Eq. (B.12)).  

 
2 Note that Qian et al. use a different notation (ref. 7). Their trajectory has n+1 vertices numbered 0…n. We 
consider a trajectory containing N vertices numbered 1…N. 
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There is correlation between square displacements 2
n i ir r+ −
G G and 

2

n j jr r+ −
G G (j < i) only if 

the two terms contain common intermediate vertices (case (b) of Fig. S6A), i.e, when i < 
j+n. Noting the displacement between the first successive vertices,1R

G
2R
G

 the displacement 
between the next two successive vertices, etc (see Fig. S6A), we obtain: 

 ( )

( ) ( ) ( )

22

2 2
1 3

2 2

2 3 1 2

n i i n j jr r r r

a j n i R R

b j n i R R R R

+ +− − =

+ < =

+ ≥ = + +

G G G G

G G

G G G G
. (D.4) 

In case (a), since  and do not have any vertices in common, their decomposition in 
terms of random variables as in Eq.

1R
G

3R
G

(B.3)-(B.4) results in independent terms: 

 
( ) ( )
( ) (

2 22
1 1 1 1 1

22
3 3 3 3 3

cos sin

cos sin

j n j j n j

i n i i n i

R d d

R d d )2

ϕ χ χ ϕ η η

ϕ χ χ ϕ η η

+

+ +

= + − + + −

= + − + + −

+

G � �

G � �
, (D.5) 

where we have introduced intermediate random variables for 1R
G

 and  as described in 
Fig. S5. As in Appendix B, the φk’s have uniform PDF in [0, 2π] χk’s, the ηk’s have 
Gaussian PDFs given by Eq. 

3R
G

(B.2) and the real displacements ’s have PDFs given by 
Eq. 

kd�

(B.5) where α is replaced by: 
 ( ) ( )( ) ( ) ( )( )4 j j j j

j e s e sD t i i i iα α= Δ − = −� , (D.6) 

in which the indices ( ) ( ),j j
e si i  represent the end point and starting point of the vector jR

G
. 

In case (b) of Fig. S6A for instance, we have: 

 

( ) ( )
( ) ( )

( )( ) ( )

1

2

3 1

4

4

4

i j i j D t

n j i n j i D t

n i n j i j D t

α α

α α

α α α

= − = − Δ

= + − = + − Δ

= + − + = − Δ =

�

�

�
. (D.7) 

Case (a) of Eq. (D.4) (Fig. S6A (a)) is the simplest to compute since random variables 
involved in the expression of  do not appear in that of 1R

G
3R
G

. Therefore, the average can 
be expressed as the product of two separate averages. After integration over all random 
variable’s PDFs, we obtain: 
 ( 22 2 2 2

1 3 1 3R R R R n )α ε= = +
G G G G

. (D.8) 

In case (b), expansion of the last expression in Eq. (D.4) results in product of terms 
involving common random variables, resulting in non separation of the averages, 
contrary to case (a). The calculations are lengthy but straightforward. Since they will be 
used for other calculations, we report the values of intermediate quantities: 
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Note that the case i = j + n where the vector 2 0R =
GG

, needs a special treatment, since 1R
G

 
and  have a common vertex, which introduces higher powers of the localization 
uncertainty random variables. 

3R
G

Using the above results and putting all terms together, we obtain finally: 
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224 2
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(D.10) 

This result is identical to that used by Qian et al. (Hong Qian, private communication), 
obtained in the absence of localization uncertainty7, except for the last term in the right 
hand side of Eq. (D.10). In other words, although none of the individual cross product 
terms or term differences is trivial (see Eq. (D.9)), the sum of most terms cancels out, 
leaving only the contribution of the terms for which j = i + n, i.e. terms contributed by 
displacements having a common end vertex. 
This result in hand, we can now tackle the computation of the variance of the square 
displacement: 
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where we have split the double sum in two parts (a) and (b) corresponding to (a) n < i ≤ 
K and (b) i ≤ n (see Fig. S6B). Obviously, if n > K, part (a) does not exist and we are left 
with part (b). If n ≤ K, the computation of part (b) requires splitting the double sum in 
three parts (b1), (b2) and their boundary (j = i – n), as illustrated in Fig. S6B: 

  (D.12) 
1 1 1

( ) 1 1 1

n i K i K

b i j i n j i n i n
j i n

− − −

= = = = − + =
= −

= + +∑ ∑∑ ∑ ∑ ∑

Finally, our result for the variance of the mean square displacement is: 
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recovering Qian et al.’s result when ε = 0 (no localization uncertainty)3 . For future 
computations, we rewrite: 
 ( )2 2 , ,n f n N xσ α= , (D.14) 
defining the function  f(n, N, x): 
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(D.15) 

with: 

 2

K N n

x
D t

ε σ
α

= −

= =
Δ�

. (D.16) 

We checked this result with simulations. The experimental variance of the mean square 
displacement ρn was calculated for NS = 1000 simulated trajectories according to: 

 ( ) ( )
2

2( ) ( )
exp

1 1

1 1var
S SN N

i
n n

i iS SN N
ρ ρ

= =

⎛ ⎞
= − ⎜

⎝ ⎠
∑ ∑ i

nρ ⎟  (D.17) 

where ( )i
nρ is the MSD of the ith simulation at time lag nΔt. As shown in Fig. 3A & S1, 

there is an excellent agreement between Eq. (D.13) and the result of formula (D.17) for 
different values of ε and α. 
                                                 
3 Note that, as pointed out by an anonymous reviewer, a more concise derivation of Eq. 
(D.13) can be obtained using the formalism of ref. 8. 
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The effect of terms in x in Eq. (D.15) is illustrated in Fig. 3A, which represents the ratio 
n nσ ρ  for different values of x (including x = 0, the result in the absence of localization 

uncertainty obtained by Qian et al.). Clearly, neglecting x severely underestimates the 
variance of the MSD, especially at short time lags. 
 
Appendix E: Probability density function of the mean square displacements 
With the non-standard definition Eq. 8 of the MSD, the independence of the square 
displacements allows the PDF of the MSD, ρn, to be computed as successive 
convolutions of the PDF of the individual square displacements, dn

7: 

 ( )2

1 exp
d

vp v
n nα ε α

⎛= −⎜+ +⎝ ⎠ε
⎞
⎟ , (E.1) 

The convolution of exponential PDFs can be shown to be Gamma distributed: 

 ( ) ( )

1

1 !n

K uK nK K eP u u
n n K

α ε

ρ α ε α ε

−− +⎛ ⎞= ⎜ ⎟+ + −⎝ ⎠
 (E.2) 

where: 
 ( )K E N n= , (E.3) 
is the number of displacements used in the mean square displacement average. 
Introducing the reduced mean square displacement random variable: 

 n
nz ρ

α
= , (E.4) 

the PDF of zn can be rewritten: 

 ( ) ( ) ( )
1

, 1 !

nz
K

K n n
ez z
K

λ

λγ λ λ
−

−=
−

, (E.5) 

where we have introduced λ: 

 K
n x

λ =
+

. (E.6) 

The mean and variance of the Gamma distribution are: 
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,

2
2

, 2
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K

K n x

n xK
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μ
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σ
λ

= = +

+
= =

 (E.7) 

In the case of the standard definition Eq. 7 of the MSD, the correlation between 
displacements renders the computation of the MSD PDF very cumbersome. We can 
however try to guess a functional form for this PDF, based on the known properties of the 
MSD derived in this article. For instance, we know that the mean and variance of the 
MSD are (Eq. (D.14)): 

 
( )

( )2 2 , ,
n

n

n x

f n N x

ρ α

σ α

= +

=
. (E.8) 

Using the reduced variable zn, the reduced mean and variance read: 
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 ( )
( )

2
2ˆ

, ,

n

n

z n x

n x
K n N x

σ

= +

+
=

. (E.9) 

where we have defined: 
 ( ) ( ) ( )2, , , ,K n N x n x f n N x= + . (E.10) 
K(n, N, x) is represented for various values of x in Fig. S7 along K = N – n, the number of 
displacements in the standard definition Eq. 7 of nρ .  
Comparing Eq. (E.9) and Eq. (E.7), we see that the test function γλ,K(zn) (Eq. (E.5)) in 
which K is defined as in Eq. (E.10) would have the correct mean and standard deviation. 
It appears that this guess function perfectly describes simulated data for x = 0 (no 
localization error), as illustrated in Fig. S8. In other words, the effect of correlations 
between displacements in Eq. 7 does not change the functional form of the MSD PDF, 
which is a Gamma distribution, but reduces the effective number of “independent” 
displacements K(n, N, x), as shown in Fig. S7. Note that for large x and small n, K(n, N, 
x) behaves as (n << x): 

 ( )
2

2

2, , ~ ~
3 31 2
2

xK n N x K K
nx x+ +

. (E.11) 

In other words, the localization uncertainty is “erasing” the correlation with (or memory 
of) previous displacements. However, it also reduces the effective number of independent 
displacement by up to a factor 2/3. 
Interestingly, this guess function still does an excellent job of describing the MSD PDF 
when x > 0, as shown in Fig. S9 for x = 10. 
Note that, for small n values, the MSD PDF is very symmetric and can be approximated 
by a Gaussian distribution of mean and standard deviation given by Eq. (E.9). 
 
In summary, we have shown than the MSD PDF is well described by a Gamma 
distribution (Eq. (E.5)), whose parameters (λ, K) are given by Eq. (E.6) and (E.10). For 
small time lags, the distribution is very symmetric (quasi Gaussian), while it becomes 
more asymmetric as n increases. This implies that using the least-square fit approach to 
extract the diffusion parameters is perfectly legitimate as long as the number of points of 
the MSD used for this purpose is such that the MSD PDF is symmetric. For larger 
number of MSD points, the least-square fit approach conditions are less well satisfied, 
although not dramatically so. 
 
Appendix F. Error on parameters of least-square fits of the MSD 
Least-square fit to a line (or more generally, to a polynomial) amounts to solving a 
system of linear equations for the fit parameters9. Analytical expressions for the fit 
parameters can easily be obtained. For a linear fit, 
 ( )t a bρ t= +  (F.1) 
The solutions are: 
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⎟  (F.2) 

where the (ti = i.Δt, ρi)’s are the coordinates of the experimental MSD data points and the 
(σi)’s are the standard deviations (SDV) for the (ρi)’s. p is the number of points of the 
MSD curve used for the fit (2 ≤ p < N). Note that Eq. (F.2) corresponds to a weighted fit, 
in which each data point ρi is weighted by the inverse of its variance 1/σi

2. We will 
address the case of an unweighted fit later in this section. 
The standard error σa on the fitting parameter a (intercept) is given by: 
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with a similar expression for the standard deviation σb of the fitting parameter b (slope)4: 
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For a pure Brownian motion with localization error and finite exposure time: 
 

4
a
b D

ε=
=

 (F.5) 

The errors on a and b are a bit more tedious to compute and require the knowledge of the 
covariance terms 2

ijσ . 
 
Covariance of the mean square displacements 
By definition: 
 2

nm n m n mσ ρ ρ ρ ρ= − . (F.6) 
Noting: 

 
K N n
P N m
= −
= −

, (F.7) 

and using the results of Appendix D, we have: 

                                                 
4 Note that in the particular case of a linear relationship as in Eq. (F.1), expression (F.3) is 
an exact Taylor expansion, as higher order partial derivatives of the fit parameters are 
equal to zero. 
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As in the calculation of 2
nρ  in Appendix D, we have to consider different cases for the 

respective order of  i, i + n, j and j + m when evaluating the bracket expression in the last 
equation of (F.8). We can assume m > n without loss of generality. We can then 
distinguish 5 different situations illustrated in Fig. S10, for which the bracket expression 
will take different forms: 
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 (F.9) 

which can be computed using the results of (D.9). Note that, as in the calculation of the 
variance 2

nσ  (Appendix D), one needs to consider separately the cases where i + n = j, i 
= j, i + n = j + m or i = j + m, in which one of the vectors 0iR =

GG
. 

We obtain: 
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The term (αn+ε)(αm+ε) common to all cases will cancel out with the subtracted term 
n mρ ρ of Eq. (F.6). To split the double sum in Eq. (F.8) according to the cases listed 
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in (F.9), we need to consider two different cases: m + n ≤ N and m + n > N, illustrated on 
Fig. S11 and S12 respectively: 
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 (F.11) 

The calculations were performed using wxMaxima, a free symbolic calculation software5. 
The final result is (m > n): 
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with similar expressions when m < n with n and m exchanged. Note that this result, 
which was verified with simulations (data not shown), differs from that of Appendix C in 
Qian et al.7. Eq. (F.12) can also be rewritten as (m > n): 
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showing that, except for the terms in ε2 (case m n N+ > ), we recover the result of Eq. 
(D.15) when n = m. 
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Fig. S2 shows a map of the values 2
nmσ  for N = 1000. Large covariances are obtained for 

large n and m and small |m-n|, as expected. 
 
Error on the fitted parameters (weighted fit) 
To simplify notations, we define the functions g(i, j, N,x) and h(i, j, N, x): 
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and the intermediate quantities: 
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Equipped with these definitions and the expressions for 2
nmσ , we can now compute the 

variance of the intercept, 2
aσ , given by Eq. (F.3). From Eq. (F.2), we get: 
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Using (D.14) and ti = i.Δt, we obtain after some algebra: 
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Similarly, for the slope b: 
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and the variance of the slope 2
bσ  reads: 
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These expressions can be evaluated numerically for different values of the number of 
fitting points p. Fig. 4 shows examples of the dependence of σa/a and σb/b on p for a 
trajectory size of N = 1000 and different values of x, while Fig. S13 shows other 
examples for N = 100 and N = 10. 
The common feature of all these graphs is the existence of a minimum error at a number 
of fitting points p which depends on x = ε/α. The larger the relative magnitude of 
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localization uncertainty ε with respect to the elementary square displacement α (i.e. the 
larger x), the larger the number of MSD points needed to achieve the best parameter 
accuracy. For x = 0 (i.e. no localization uncertainty), the best accuracy for the diffusion 
coefficient D is always achieved with the first two points of the MSD curve (p = 2). 
Note that for small numbers of trajectory points (N = 10, Fig. S13) and large enough x, 
the minimum is attained when all points of the MSD curve are used for the fit (p = N - 1). 
 
Error on the fitted parameters (unweighted fit) 
Obtaining an experimental estimate of the σi

2 (Eq. (D.13)) is not trivial. For this reason, 
the least-square fit to Eq. (F.1) is oftentimes performed without weighting the MSD data 
points, i.e. setting σi

2 = 1 in Eq. (F.2). In this case, the fit parameters read9: 
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This has two practical consequences: (i) the fitted parameters will be different from that 
of a weighted fit (although the theoretical expectations remain the same, i.e. a and b of 
Eq. (F.1)) and (ii) the standard error on the fitted parameters will also be different. 
The standard error on the parameters can still be estimated using the same Eq. (F.3) & 
(F.4) (in which we need to keep the variance and covariance of the MSD) but replacing 
(F.16) & (F.18) by the expressions derived from Eq.(F.20): 
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Using ti = i.Δt, we obtain: 
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The results for the error on the unweighted fit parameters 2
aσ  and 2

bσ follow: 
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which can easily be computed numerically. 
 
Fig. 6 shows examples of the dependence of σa/a and σb/b on p for a trajectory size of N = 
1000 and different values of x, while Fig. S14 shows other examples for N = 100 and N = 
10. As for the weighted fit result, there is a minimum error for a number p of fitting 
points depending on x = ε/α. 
 
Comparison of the two fitting methods 
Since one of the two methods (the unweighted fit) requires less a priori knowledge, it is 
interesting to compare the expected error on the fitted parameters in both cases. Fig. 7 
regroups the results of Fig. 4C-D & 6C-D. It shows that even though the errors are 
always smaller in the case of a weighted fit, the absolute minima are comparable. In other 
words, if we know the optimal number of fitting points, there is no real advantage in 
using the weighted fit method, which requires the additional knowledge of the SDV of 
the MSD curve. 
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Appendix G: C-code to compute the main formulas derived in this work 
 
/*--------------------------------------------------------------------* 
* File Name:     MSDFormula.c                                        * 
 * Creation:      XM                                                  * 
 * Purpose:       Supporting Information to:                          * 
 * “Mean Square Displacement Analysis of Single-Particle Trajectories * 
 *  with Localization Error: Brownian Motion in Isotropic Medium”     * 
 *                                                                    * 
 * Copyright (c) X. Michalet, 2010                                    * 
 *                                                                    * 
 *                                                                    * 
 * Created: 08/28/2010                                                * 
 *--------------------------------------------------------------------*/ 
 
/* Relative errors on fit performed with weights */ 
 
double NormMSDInterceptError(double x, double P, double N) 
{ 
// square root of Eq. F18 (sigma_a/a) 
// 
// x : epsilon/alpha= 4.sigma^2/4.D.delta t 
// N  : number of points in the trajectory 
// P  : <N, number of points used for the fit 
 
 int i,j; 
 double fi, fj, gij, hij, sum0 = 0, sum1 = 0, sum2 = 0; 
 double h0, h1, sumh0 = 0, sumh1 = 0, sumh2 = 0; 
 double delta, temp, norm_sigmaa; 
  
 if (P < 2 || P >= N) 
  return 0; 
 for (i=1; i<= P; i++) 
 { 
  fi = f(i, N, x); 
   
  sum0 += fi; 
  sum1 += i*fi; 
  sum2 += i^2*fi; 
  h0 = 0; h1 = 0; 
  for (j=1; j<i; j++) 
  { 
   fj = f(j,N,x); 
   gij = g(i,j,N,x); 
   hij = fi*fj*gij; 
   h0 += hij; 
   h1 += j*hij; 
  } 
  sumh0 += h0; 
  sumh1 += i*h0 + h1; 
  sumh2 += i*h1; 
 } 
 delta = sum0*sum2 - sum1^2; 

temp = (sum2 + 2*(sum2^2*sumh0 - sum1*sum2*sumh1 + 
sum1^2*sumh2)/delta)/delta; 

 norm_sigmaa = sqrt(temp)/x;  
 return norm_sigmaa; 
} 
double NormMSDSlopeError(double x, double P, double N) 
{ 
// square root of Eq. F20 (sigma_b/b) 
// 
// x : epsilon/alpha= 4.sigma^2/4.D.delta t 
// N  : number of points in the trajectory 
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// P  : <N, number of points used for the fit 
 
 int i,j; 
 double fi, fj, gij, hij, sum0 = 0, sum1 = 0, sum2 = 0; 
 double h0, h1, sumh0 = 0, sumh1 = 0, sumh2 = 0; 
 double delta, temp, norm_sigmab; 
  
 if (P < 2 || P >= N) 
  return 0; 
  
 for (i=1; i<= P; i++) 
 { 
  fi = f(i, N, x); 
   
  sum0 += fi; 
  sum1 += i*fi; 
  sum2 += i^2*fi; 
  h0 = 0; h1 = 0; 
  for (j=1; j<i; j++) 
  { 
   fj = f(j,N,x); 
   gij = g(i,j,N,x); 
   hij = fi*fj*gij; 
   h0 += hij; 
   h1 += j*hij; 
  } 
  sumh0 += h0; 
  sumh1 += i*h0 + h1; 
  sumh2 += i*h1; 
 } 
 delta = sum0*sum2 - sum1^2; 

temp = (sum0 + 2*(sum1^2*sumh0 - sum0*sum1*sumh1 + 
sum0^2*sumh2)/delta)/delta; 

 norm_sigmab = sqrt(temp); 
 return norm_sigmab; 
} 
 
/* Relative errors on fit performed without weights */ 
 
double NormMSDInterceptErrorNW(double x, double P, double N) 
{ 
// square root of Eq. F24 (sigma_a/a) 
// 
// x : epsilon/alpha= 4.sigma^2/4.D.delta t 
// N  : number of points in the trajectory 
// P  : <N, number of points used for the fit 
 
 int i,j; 
 double fi, gij; 
 double h0, h1, sum0 = 0, sum1 = 0, psum_i; 
 double temp0, temp, norm_sigmaa; 
  
 if (P < 2 || P >= N) 
  return 0; 
 for (i=1; i<= P; i++) 
 { 
  fi = f(i, N, x); 
  sum0 += ((2*P+1.)/3. - i)^2/fi; 
  psum_i = 0; 
  for (j=1; j<i; j++) 
  { 
   gij = g(i,j,N,x); 
   psum_i += ((2*P+1.)/3. - j)*gij; 
  } 
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  sum1 += psum_i*((2*P+1.)/3. - i); 
 } 
 temp = (sum0 + 2*sum1); 
 norm_sigmaa = sqrt(temp)*6/P/(P-1)/x; 
 return norm_sigmaa; 
} 
 
double NormMSDSlopeErrorNW(double x, double P, double N) 
{ 
// square root of Eq. F24 (sigma_b/b) 
// 
// x : epsilon/alpha= 4.sigma^2/4.D.delta t 
// N  : number of points in the trajectory 
// P  : <N, number of points used for the fit 
 
 int i,j; 
 double fi, gij; 
 double h0, h1, sum0 = 0, sum1 = 0, psum_i; 
 double temp, norm_sigmab; 
  
 if (P < 2 || P >= N) 
  return 0; 
 for (i=1; i<= P; i++) 
 { 
  fi = f(i, N, x); 
  sum0 += ((P+1.)/2. - i)^2/fi; 
  psum_i = 0; 
  for (j=1; j<i; j++) 
  { 
   gij = g(i,j,N,x); 
   psum_i += ((P+1.)/2. - j)*gij; 
  } 
  sum1 += psum_i*((P+1.)/2. - i); 
 } 
 temp = (sum0 + 2*sum1); 
 norm_sigmab = sqrt(temp)*12/P/(P-1.)/(P+1.); 
 return norm_sigmab; 
} 
 
double MSDPDF(double z, double n, double N, double x) 
{ 
// Eq. E5 with the definition Eq. E10 of K 
// 
// x : epsilon/alpha= 4.sigma^2/4.D.delta t 
// N  : number of points in the trajectory 
// n  : MSD point 
// z : normalized MSD (rho_n/alpha) 
// gammaln: natural logarithm of the gamma function 
//     gamma(N) = (N-1)! 
 
 double K, pdf; 
  
 K = (n+x)^2*f(n,N,x); 
 pdf = ln(K/(n+x)) + (K-1)*ln(K*z/(n+x)) - K*z/(n+x) - gammaln(K); 
 return exp(pdf); 
} 
double gammadist(double lambda, double k, double x) 
{ 
// gamma distribution 
// gammaln: natural logarithm of the gamma function 
//   gamma(N) = (N-1)! 
 
 double pdf; 
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 pdf = ln(lambda)+(k-1)*ln(lambda*x)-lambda*x - gammaln(k); 
 return exp(pdf); 
} 
double f(double n, double N, double x) 
{ 
// Eq. D15 
 
 double K, f; 
  
 K = N - n; 
 if (n <= K) 
  f = fminus(n,N,x); 
 else 
  f = fplus(n,N,x); 
 return f; 
} 
double fminus(double n, double N, double x) 
{ 
 double K, f; 
  
 K = N - n; 

f = n*(4*n^2*K + 2*K - n^3 + n)/6/K^2 + (2*n*x + (1+(1 - 
n/K)/2)*x^2)/K; 

 return 1/f; 
} 
double fplus(double n, double N, double x) 
{ 
 double K, f; 
  
 K = N - n; 
 f = (6*n^2*K - 4*n*K^2 + 4*n + K^3 - K)/6/K + (2*n*x + x^2)/K; 
 return 1/f; 
} 
double g(double m, double n, double N, double x) 
{ 
// Eq. F13 
 
 double g; 

double tmp; 
  
 if (m <= n) 
 { 
  m = tmp; 
  m = n; 
  n = tmp; 

} 
 if (m+n > N) 

g = (N^2*(N - 4*n - 3*m) + N*(6*n^2 + 8*m*n + 3*m^2 - 1) -
6*n^3 - 4*m^2*n + 4*n - m^3 + m)/6/K + (2*n*x + x^2/2)/K; 

 else 
g = n*(-N*(2*n^2 - 6*m*n - 2) - n^3 + 2*m*n^2 - 6*m^2*n + n 

- 2*m)/6/K/P + (2*n*x + (1 - n/2/P)*x^2/2)/K; 
 return g; 
}

24/27 



Single-Particle Trajectory MSD Analysis: Supporting Information 

References 
 
1 F. Pinaud, X. Michalet, G. Iyer, et al., Traffic 10, 691 (2009). 
2 J. Schuster, F. Cichos, and C. von Borczyskowski, Journal of Physical Chemistry 

A 106, 5403 (2002). 
3 M. Goulian and S. M. Simon, Biophysical Journal 79, 2188 (2000). 
4 T. Savin and P. S. Doyle, Biophysical Journal 88, 623 (2005). 
5 Maxima.sourceforge.net,  (Souceforge.net, 2009). 
6 D. Montiel, H. Cang, and H. Yang, Journal of Physical Chemistry B 110, 19763 

(2006). 
7 H. Qian, M. P. Sheetz, and E. L. Elson, Biophysical Journal 60, 910 (1991). 
8 T. Savin and P. S. Doyle, Physical Review E 76, 021501 (2007). 
9 P. R. Bevington and E. K. Robinson, Data Reduction and Error Analysis for the 

Physical Sciences (McGraw-Hill, 1992). 
 

25/27 



Single-Particle Trajectory MSD Analysis: Supporting Information 

Supporting Information Figure Captions 
 
Fig. S1: Comparison between the MSD SDV of simulated data and theory. For each set 
of parameters (σ, D, Δt), NS = 1000 simulations of N = 1000 steps were performed. The 
MSD and MSD SDV were calculated for each time lag (Eq.(D.17). The corresponding 
MSD (black) and MSD ± SDV (dark gray) curves are represented together with the 
theoretical result (red, Eq. (D.13)) using the corresponding x value. The box above each 
graph indicates the parameters used for the simulations. MSD units: μm2/s. 
 
 
Fig. S2: Map of the covariance terms 2

nmσ  for x = 0, N = 1000 (Eq. (F.13)). The 
maximum covariance is obtained for large n and m and is symmetric around the axis n = 
m. This behavior is not changed for x > 0. 
 
Fig. S3: Relative covariance of the MSD (Eq. (29)). A: For x = 0, the relative covariance 
is approximately equal to n/N (dashed curve), where n is the time lag and N the number 
of points in the trajectory. Different sections of the relative covariance map (m = kn) are 
shown. B: For x > 0, the relative covariance decreases as x increases. Note however, that, 
as shown in Fig. S2, the covariance itself is unchanged and remains large. 
 
Fig. S4: Schematic explaining the definition of sub-trajectories used in instantaneous 
diffusion coefficient analysis. A. The case of sub-trajectories of length NS = 3 is 
illustrated, with two complete sub-trajectories (T5 and T8) and one incomplete “end” sub-
trajectory (T1) shown. B. For MSD fit for each sub-trajectory, a series of diffusion 
coefficient values D(t) is obtained. 
 
Fig. S5: Decomposition of the observed displacement n i id r r+= −

G G G as a sum of the real 

displacement and random localization error in both directions, χi, χn+I and ηi, 
ηn+i. 

n i id r r+= −
G G� � G�

 
Fig. S6: A. Two different cases occurring when computing the correlation between two 
displacements: (a) the two displacements do not have any intermediate vertex in common 
(they do not “overlap”); (b) the two displacements overlap. By convention,  represents 
the displacement between the vertices with the two lowest indices, etc. Note that for this 
reason, the definition of the ’s are different in case (a) and (b). B. Decomposition of the 
double sum over i and j in Eq. 

1R
G

kR
G

(D.11) in parts having identical summand (a or bk) and 
leading to simple algebraic expressions (b1 and b2). This figure is directly inspired from 
handwritten notes from Prof. Qian. 
 
Fig. S7: Number of effective independent square displacements as a function of time lag 
n for a trajectory containing N = 1000 points (Eq. (E.10)). The different curves 
correspond to different reduced localization uncertainty parameter x. The dashed curve 
corresponds to K = N – n, the number of displacements corresponding to a time lag of n. 
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Fig. S8: Reduced mean square displacement distributions for representative values of the 
time lag n, in the absence of localization uncertainty (x = 0). Number of trajectory points, 
N = 1000. Histogram: result of NS = 1000 simulations. Black curve: Gamma distribution 
with parameters λ, K given by Eq. (E.6) and (E.10). 
 
Fig. S9: Reduced mean square displacement distributions for representative values of the 
time lag n, in the presence localization uncertainty (x = 10). Number of trajectory points, 
N = 1000. Histogram: result of NS = 1000 simulations. Black curve: Gamma distribution 
with parameters λ, K given by Eq. (E.6) and (E.10). 
 
Fig. S10: Different possibilities for the order of indices i, i+n, j and j+m in Eq. (F.9). The 
vectors  are defined as represented on the upper part of the figure. kR

G

 
Fig. S11: Decomposition of the double sum over j and i in Eq. (F.8) in parts having 
identical summand when m+n ≤ N (Eq. (F.11)). 
 
Fig. S12: Decomposition of the double sum over j and i in Eq. (F.8) in parts having 
identical summand when m+n > N (Eq. (F.11)). 
 
Fig. S13: Relative error on fitted parameters (weighted fit, N = 100 & N = 10 points), Eq. 
(F.17) and (F.19). Evolution of the relative errors on fitted parameters (A, C: intercept a; 
B, D: slope b) as a function of the number of MSD points used for the fit. The curves 
correspond to different values of reduced localization error x. 
 
Fig. S14: Relative error on fitted parameters (unweighted fit, N = 100 & N = 10 points), 
Eq. (F.23). Evolution of the relative errors on fitted parameters (A, C: intercept a; B, D: 
slope b) as a function of the number of MSD points used for the fit. The curves 
correspond to different values of reduced localization error x. 
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