## Cytotoxicity assay

WT and Elf-1<sup>-/-</sup> mice were given (i.p.) 100  $\mu$ g of poly(I:C), and the splenic NK activity was assessed after 16 hr using the standard <sup>51</sup>Cr-release assay with Yac-1 target cells. Briefly, a single-cell suspension of splenic effector cells was prepared. Cytotoxic killing was determined by measuring <sup>51</sup>Cr release from <sup>51</sup>Cr-labeled YAC-1 cells (10<sup>4</sup>/well) that had been incubated with effector cells for 4 hr at 37 °C. The percentage specific lysis was calculated as s follows: 100 × (experimental release - spontaneous release) / (maximum release - spontaneous release).

## Cytokine production by NK cells and conventional T cells

To examine the ability of NK cells and conventional T cells to secrete cytokine, hepatic leukocytes were stimulated with PMA/ionomycin for 5 hr. Monensin (10  $\mu$ M) was added 2 hr before harvest. Cells were stained with CD1d/ $\alpha$ GalCer tetramer, anti-TCR $\beta$ , and anti-NK1.1 antibody, followed by intracellular staining for IFN- $\gamma$ .



Figure S1. Elf-1<sup>-/-</sup> mice exhibit reduced amounts of GM-CSF production.

Splenocytes and hepatic leukocytes were isolated from WT and Elf-1<sup>-/-</sup> mice and stimulated with  $\alpha$ GalCer. After 48 h, levels of GM-CSF in the supernatant were detected by ELISA. Error bars represent the SD of triplicate wells. Data shown are representative of 2 independent experiments.



Figure S2. NK cells and conventional T cells found in Elf-1<sup>-/-</sup> mice exhibit normal function. (A) Hepatic leukocytes were isolated from Elf-1<sup>-/-</sup> and WT mice and stimulated with PMA/ionomycin. Cells were then stained with mAb against various cell surface markers, stained intracellularly for IFN- $\gamma$ , and analyzed by flow cytometry. Histograms depict staining for IFN- $\gamma$  on iNKT cells (CD1d/ $\alpha$ GalCer tetramer<sup>+</sup>TCR $\beta^+$  gate), NK cells (NK1.1<sup>+</sup>TCR $\beta^-$  gate), and conventional T cells (NK1.1<sup>-</sup> CD1d/ $\alpha$ GalCer tetramer<sup>-</sup>TCR $\beta^+$  gate). Results are representative of 2 independent experiments. (B) NK cytolytic activity of Elf-1-deficient splenocytes. Splenocytes from the polyI:C treated Elf-1<sup>-/-</sup> and WT mice were used as effectors in a <sup>51</sup>Cr release assay. <sup>51</sup>Cr-labeled YAC-1 cells were used as target cells at the indicated effector:target (E:T) ratio. Results are representative of 2 independent experiments.



Figure S3. Residual NKT cells in Elf-1<sup>-/-</sup> mice have normal IL-2 receptor chain expression. Hepatic leukocytes were isolated from Elf-1<sup>-/-</sup> and WT mice and stained with CD1d/ $\alpha$ GalCer tetramer and mAb against TCR $\beta$ , CD25 (IL-2R $\alpha$ ), and CD122 (IL-2R $\beta$ ), then analyzed by flow cytometry. Histograms depict CD25 and CD122 expression within the tetramer<sup>+</sup>TCR $\beta$ <sup>+</sup> population. Results are representative of 2 individual experiments.