Supplementary data 3. Quantification of Ca²⁺ buffering capacity (κ)

The buffering capacity κ is defined as²² the increase in the Ca²⁺ that is bound to buffers in a system relative to the amount of Ca²⁺ that will stay unbound upon a change in total Ca²⁺ of that system:

$$\kappa = \frac{d \left[CaB \right]}{d \left[Ca^{2+} \right]}$$
 (eq. S7)

Strictly this means that κ should quantify the full Ca^{2^+} -buffering capacity of a system, irrespective of the buffering speed. However, in practice it is used to describe only the fast buffering capacity of a system. Generally, κ is determined using the 'added buffer' approach^{22,23,24}. With this method one determines the $\Delta[Ca^{2^+}]_{total}$ that is undetectable by the used dye due to the fast buffering of the system. It describes how much bigger the portion of ΔCa^{2^+} that is rapidly bound by buffers in the system compared to the maximum portion that is detected by the dye. To compare κ 's (determined by the added buffer method) between two experiments, one has to use dyes with similar kinetics because κ expresses the buffer capacity that is faster than the indicator. A faster indicator will yield a smaller κ . The decay in $[Ca^{2^+}]$ that is detected by the dye after the peak in measured $[Ca^{2^+}]$ is generally considered to result from slower mechanisms of $[Ca^{2^+}]$ regulation (e,g,, extrusion) and is therefore not included in κ (even if it is binding of Ca^{2^+} to a buffer).