Supplementary data 5. Simulating 1 yM dye to measure [Ca²⁺]

In a simulation the $[Ca^{2+}]$ can be directly determined and does not have to be measured as such. However, to make a comparison with what would be measured in real measurements in cells, we calculated the Ca²⁺ signal that would be measured by adding to our simulation 1 yM (10^{-24} M) of OGB-1 (Fig. 2a, K_d=170 nM, k_{on}=10⁹ M⁻ ¹s⁻¹), a dye often used for Ca²⁺ measurements in neurons. Such small concentration of OGB-1 is impossible to use in a real experiment. However, in a simulation it will not influence the actual [Ca²⁺] but can still be used to reflect the limit of [Ca²⁺] that would be imposed by the kinetic properties of OGB-1 in a real experiment ([Ca²⁺]_{OGB-1})^{5,25}. In our simulation, the [Ca²⁺]_{OGB-1} has a peak amplitude of 2.5 µM. The limit of [Ca²⁺] that could be measured with a dye in a real experiment is basically what is determined with the 'added buffer' approach used to determine $\kappa^{22,23,24}$. By measuring the [Ca²⁺] under different Ca²⁺ indicator concentrations one interpolates the [Ca²⁺] that would be measured with no indicator present at all. Here we simply do the same by using an infinitesimally small amount of dye in the simulation. With a known Δ [Ca²⁺]_{total} of 50 µM this means that fast buffer capacity (κ) of the whole system (including fast buffering by CB and the C-terminus) is 19, which is comparable to values found for fast buffering in spines of CA1 pyramidal cells ^{5,25}.