
 

 

 

Supplementary figure legend. A more detailed description of figure 2 in the main text 

In figure 2 a single neuronal compartment was simulated with a buffer composition as expected in CA1 pyramidal 

cells. In this compartment with 100 M CaM and 30 M CB the [Ca2+] was very rapidly (=10 s) increased by 

50 M ([Ca2+]total). At 20 s (the maximum time resolution in the figure is 20 s) [Ca2+]free peaks at 8.8 M. As 

the total [Ca2+] increases, the bulk of the [Ca2+]total  is rapidly bound to the N-terminus of CaM. At ~40 s, 36.4 

M Ca2+ (73% of [Ca2+]total) is bound to the N-terminus ([Ca2+]N), while at that moment 5.2 M (10% of 

[Ca2+]total) and 1.7 M (3.3% of [Ca2+]total)  are bound to the C-terminus ([Ca2+]C) and CB ([Ca2+]CB) 

respectively. After this, the [Ca2+]N drops with two ‟s of 0.38 ms (64%) and 2.1 ms (36%) to 0.54 M (1.1% of 

[Ca2+]total) at 30 ms. Around 0.9 ms the [Ca2+]C reaches its maximum of 21.4 M (43% of [Ca2+]total) while at 

that moment there is 11.0 M [Ca2+]N (22% C and 14.9 M [Ca2+]CB (30% of ([Ca2+]total). After this peak the 

[Ca2+]C drops with a  of 3.7 ms to 9.8 M (19.7% of [Ca2+]total) at 30 ms. Over the whole experimental period, 

the [Ca2+]CB steadily increases with ‟s of 0.63 ms (27%) and 3.1 ms (73%) to 39.3 M (78.6% of [Ca2+]total) at 

30 ms. With 99.3% [Ca2+]total bound to either the N-terminus, C-terminus or CB 0.35 M of [Ca2+]total (i.e., 

0.7%) remains unbound after 30 ms.  

b) To better understand how Ca2+ moves through the system composed of 3 buffers, the amount of Ca2+ flowing 

between the four states, free ([Ca2+]free), bound to the N-terminus ([Ca2+]N), bound to the C-terminus ([Ca2+]C) 

and bound to CB ([Ca2+]CB) were calculated for 3 epochs. The concentrations of Ca2+ in the different states is 

represented by the area covered by the different circles where the grey area represents the concentration at the 

beginning of the epoch, while the colored circles represent the concentration at the end of the epoch. The numbers 

in the figure indicate percent of [Ca2+]total. During the first epoch (red), which runs from the start of the 

simulation (t=0 s) to when [Ca2+]N peaks (t=40 s) 86.6% of the 50 M [Ca2+]total (top grey circle) is directly 

bound by the 3 buffers (78.7% [Ca2+]N, 6.0% [Ca2+]C and 1.9% [Ca2+]CB). Small amounts of buffered Ca2+ are 

already redistributed from [Ca2+]N to [Ca2+]N (4.4%) and [Ca2+]CB (1.5%). During the second epoch (green), which 

runs from 40 s to when [Ca2+]C peaks (t=900 s), and the last epoch (green, 0.9–30 ms) a further total of 11.7% 

of free Ca2+ is directly bound by the N-terminus whereas the amounts of free Ca2+ directly binding to either C-

terminus (0.8%) or CB (0.2%) are less than 1% and for clarity are not shown. After the first 40 s the main „flow‟ 

of Ca2+ is the redistribution between the 3 buffering components. During the second epoch 33.0% moves from 

[Ca2+]N to [Ca2+]C, 25.3% from [Ca2+]N to [Ca2+]CB and 1.0% from [Ca2+]C to [Ca2+]CB.  Remarkably, during the 

third epoch 19.3% moves back from [Ca2+]C to [Ca2+]N which is then directly redistributed to the C-terminus as 

part of the 44.4% that moves from [Ca2+]N to [Ca2+]CB . Also a further 4.2% moves from [Ca2+]C to [Ca2+]CB. All 

the net redistributions that take place during the 30 ms of the simulation are shown in the diagram with the black 

arrows where the black circles correlate with the end concentration and the white circles indicate the maxima 

reached during the experiment. Over the whole period more than 89% of the [Ca2+]total is first bound by the fast 



 

N-terminus which is later bound to the slower C-terminus and CB which eventually outcompete the N-terminus 

based on their higher affinity for Ca2+.   
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