# **Supplementary Information**

Nuclear import of an intact preassembled proteasome particle

Anca F. Savulescu, Hagai Shorer, Oded Kleifeld, Ilana Cohen, Rita Gruber, Michael H.

Glickman and Amnon Harel

Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel

The Supplementary Information includes the following material:

- Supplemental Tables S1, S2 and S3.
- Supplemental Figures S1 and S2.
- Supplemental Methods.
- Supplemental References.

**Supplemental Table S1.** Proteasome subunits identified by in solution mass spectrometry of isolated 26S particles from egg cytosol. A sample of the 26S particle preparation was subjected to tryptic digestion in solution, followed by analysis on an ion-trap mass spectrometer. All the known *bona fide* proteasome subunits are abundantly present in this sample and characterized by high spectral counts. Detailed analysis of all three types of proteasome particles and a comparison to proteasomes isolated from other systems, will be presented elsewhere.

| GI        | Uniprot<br>Accession | Protein name                                  | PP<br>Probability | Percent<br>Coverage | Unique<br>Peptides | Spectral Counts |
|-----------|----------------------|-----------------------------------------------|-------------------|---------------------|--------------------|-----------------|
|           |                      |                                               |                   |                     |                    |                 |
| 148228229 | O58E21               | PSMA1 (a6)                                    | 1                 | 80.8                | 39                 | 52              |
| 130852    | P24495               | $PSMA2(\alpha 2)$                             | 1                 | 87.2                | 51                 | 70              |
| 27371303  | Q8AVD2               | PSMA3 (a7)                                    | 1                 | 56.9                | 23                 | 38              |
| 76779672  | Q3KPN6               | $PSMA4(\alpha 3)$                             | 1                 | 80.1                | 40                 | 51              |
| 51968292  | Q68A89               | PSMA5 (a5)                                    | 1                 | 62.7                | 23                 | 40              |
| 50603942  | Q6AZR7               | PSMA6 (a1)                                    | 1                 | 72                  | 33                 | 47              |
| 49522772  | Q9PVQ1               | PSMA7b (a4)                                   | 1                 | 69.2                | 39                 | 54              |
| 114107802 | Q7ZYL1               | PSMB1 (β6)                                    | 1                 | 77                  | 35                 | 49              |
| 77748113  | Q6GQ40               | PSMB2 (β4)                                    | 1                 | 79.9                | 35                 | 49              |
| 56270462  | Q5PQ24               | PSMB3 (β3)                                    | 1                 | 54.6                | 22                 | 30              |
| 33417170  | Q7T0M9               | PSMB4 (β7)                                    | 1                 | 50.8                | 31                 | 40              |
| 148228778 | Q3KPV9               | PSMB6 (β1)                                    | 1                 | 76.5                | 21                 | 33              |
| 147906595 | Q68EX4               | PSMB7 (β2)                                    | 1                 | 55.6                | 26                 | 33              |
| 161611764 | A9JS79               | PSMB8 (β5)                                    | 1                 | 59.3                | 28                 | 35              |
| 32484378  | Q7SYS3               | PSMC1 (Rpt2)                                  | 1                 | 68.6                | 42                 | 51              |
| 163916327 | A9ULV8               | PSMC2 (Rpt1)                                  | 1                 | 75.8                | 57                 | 76              |
| 32450569  | Q7SZ30               | PSMC3 (Rpt5)                                  | 1                 | 66.7                | 41                 | 54              |
| 37994750  | Q6PAD3               | PSMC4 (Rpt3)                                  | 1                 | 69.8                | 46                 | 55              |
| 49255977  | Q6GQB7               | PSMC5 (Rpt6)                                  | 1                 | 71.6                | 52                 | 70              |
| 28278099  | Q7ZX98               | PSMC6 (Rpt4)                                  | 1                 | 68.9                | 37                 | 45              |
| 147905374 | Q498L1               | PSMD1 (Rpn2)                                  | 1                 | 56.4                | 26                 | 29              |
| 46249663  | Q6NTK4               | PSMD2 (Rpn1)                                  | 1                 | 63.8                | 72                 | 86              |
| 148228892 | Q6GNC1               | PSMD3 (Rpn3)                                  | 1                 | 52.6                | 41                 | 55              |
| 148235905 | Q4V845               | PSMD4 (Rpn10)                                 | 0.8748            | 55.3                | 3                  | 3               |
| 56789608  | Q5M7C5               | PSMD5 (S5b)                                   | 1                 | 43.4                | 17                 | 17              |
| 54038456  | Q5XGT1               | PSMD6 (Rpn7)                                  | 1                 | 66.3                | 43                 | 49              |
| 147906376 | Q66IY6               | PSMD7 (Rpn8)                                  | 1                 | 69.1                | 36                 | 40              |
| 124481860 | A2RV94               | PSMD8 (Rpn12)                                 | 1                 | 65.3                | 6                  | 6               |
| 146327494 | A5D8M2               | PSMD10 (Nas6/gankyrin)                        | 1                 | 61.3                | 10                 | 11              |
| 148236500 | Q6AXA3               | PSMD12 (Rpn5)                                 | 1                 | 62.1                | 34                 | 40              |
| 148233662 | Q66IX2               | PSMD13 (Rpn9)                                 | 1                 | 85.7                | 48                 | 59              |
| 49258176  | Q7ZX92               | PSMD14 (Rpn11)                                | 1                 | 63.2                | 29                 | 33              |
| 133777072 | Q6GN67               | ADRM1-A                                       | 1                 | 29.7                | 10                 | 10              |
| 76779916  | Q7ZXD6               | ADRM1-B                                       | 1                 | 35.9                | 11                 | 11              |
| 46250075  | Q6NUB1               | PAAF1 (thul16) (Rpn14)<br>Ubiquitin carboxyl- | 1                 | 22                  | 9                  | 10              |
| 115292033 | Q0D260               | terminal hydrolase<br>UCHL5                   | 1                 | 67.2                | 19                 | 21              |

**Supplemental Table S2.** Unique high molecular weight polypeptides identified in the 20S+ particle preparation. The primary proteins co-purifying with the 20S CP in the samples designated as "20S+" were excised from the ~80-110 kDa region of denaturing gels and subjected to in gel tryptic digestion and mass spectrometry analysis. High coverage proteins that were identified in multiple preparations of the 20S+ particle are compiled in this table.

| GI        | <b>Uniprot</b> Accession | Description                                                   | Annotation              |
|-----------|--------------------------|---------------------------------------------------------------|-------------------------|
| 46249663  | Q6NTK4                   | PSMD2 (Rpn1)                                                  | Proteasome              |
| 147905374 | Q498L1                   | PSMD1 (Rpn2)                                                  | Proteasome              |
| 54873686  | Q6AZV1                   | Hsp90 beta protein                                            | Heat shock protein      |
| 58177833  | Q5FWY4                   | DNA replication licensing factor mcm6                         | Replication licensing   |
| 83405215  | Q2TAF3                   | Echinoderm microtubule-associated protein-<br>like 4 (emap-4) | Microtubule stabilizing |
| 52139137  | Q640K1                   | Neurochondrin                                                 | Signal transduction     |
| 168693593 | B0LM40                   | Importin beta                                                 | Nuclear transport       |

**Supplemental Table S3.** Major components of the isolated "+" fraction. Proteins dissociated from the proteasome core particle were further purified by gel filtration chromatography (see: Materials and Methods) and the isolated "+" fraction was functionally defined by the import assays shown in Figure 7. Three separate samples of the "+" fraction were analyzed by mass spectrometry. Only proteins that appeared in all three samples, with a Protein Prophet probability of 0.99-1 and that were identified by at least two unique peptides, are shown.

| GI        | <b>Uniprot</b> Accession | Description                                                  | Annotation            |
|-----------|--------------------------|--------------------------------------------------------------|-----------------------|
| 46249663  | Q6NTK4                   | PSMD2 (Rpn1)                                                 | Proteasome            |
| 147905374 | Q498L1                   | PSMD1 (Rpn2)                                                 | Proteasome            |
| 54873686  | Q6AZV1                   | Hsp90 beta protein                                           | Heat shock protein    |
| 108935850 | P55861                   | DNA replication licensing factor mcm2                        | Replication licensing |
| 82241532  | Q7ZXB1                   | DNA replication licensing factor mcm7                        | Replication licensing |
| 147900810 | Q569Z1                   | Eukaryotic translation initiation factor 3 subunit B (eIF3b) | Translation           |
| 168693593 | B0LM40                   | Importin beta                                                | Nuclear transport     |

С

19S <sup>20S+</sup> Xenopus egg cytosol + 0.5 mM ATP no ATP DEAE Affi-gel Blue DEAE Affi-gel Blue Q Sepharose FF Q Sepharose FF Superose-6 Superose-6 26S 0.5 M KCl, 1 hour 1 M KCl. 2 hours CHT Hydroxyapatite CHT Hydroxyapatite 20S 20S+ input 19S 20S+ SDS-PAGE - Immunoblot Native gel - Immunoblot anti Rpn2 anti α7 Rpn2 Hsp90 α7 20S+ 20S 26S "+" fraction "+" fraction 20S+ "+" fraction 20S+

В

**Supplemental Figure S1.** Purification of active proteasome particles from *Xenopus* egg cytosol. (A). A flowchart summarizing the purification scheme for the three active proteasome particles, as detailed in Materials and Methods. ATP was included in all the buffers of the 26S purification protocol to preserve the structure of the proteasome holoenzyme. By contrast, ATP was omitted from the buffers used in 20S/20S+ purifications. Following Superose-6 gel filtration, separate protocols differentiated between 20S+ and 20S particles by the stringency of salt treatment followed by CHT Hydroxyapatite chromatography. (B) An example of 20S+ purification showing a typical elution profile from the last step of purification (CHT Hydroxyapatite chromatography). Protein content was visualized by silver staining. Only fractions labeled "20S+" showed peptidase activity, which marks the presence of proteasome core particles. (C) Comparison of the three proteasome particle preparations with the purified "+" fraction, which contains proteins that dissociate from proteasomes fractionated over a CHT

Hydroxyapatite column. A denaturing SDS-PAGE immunoblot (left) shows that Rpn2 and Hsp90 are present in the "+" fraction, while  $\alpha$ 7 is missing from it. A non-denaturing immunoblot (right) demonstrates that Rpn2 and  $\alpha$ 7 co-migrate in the 20S+ particle (arrowhead; see also Figure 3C), while the dissociated Rpn2 in the "+" fraction migrates at a different position (thin arrow). Note that proteins migrate in native gels as a complex function of molecular mass and exposed surface charge.



**Supplemental Figure S2.** Nuclear rim staining by 26S and 20S particles requires NPCs. Fluorescently labeled 26S and 20S particles were added into normal reconstitution reactions (Functional nuclei), or reactions in which NPC assembly was inhibited by BAPTA (Pore-less nuclei). Reactions were further incubated for 30 min and samples were fixed and analyzed by epifluorescence microscopy. Both the 26S and 20S particles accumulated at the nuclear envelope of functional nuclei, producing a punctuate rim staining. No staining was observed in BAPTA-inhibited intermediates, which contain fully sealed nuclear membranes with no nuclear pores. Scale bar, 10 µm.

## SUPPLEMENTAL METHODS

#### In solution digestion

The proteins of the 26S preparation were denatured by the addition of 8M Urea, reduced with 10 mM DTT at 60°C for 30 min, modified with 100 mM iodoacetamide in 10 mM ammonium bicarbonate and trypsinized in 10 mM ammonium bicarbonate containing modified trypsin (Promega) at a 1:50 enzyme-to-substrate ratio, overnight at 37°C.

## In gel digestion

The proteins of the 20S+ preparation were resolved by SDS-PAGE and silver stained. The protein bands of the ~80-110 kDa region were excised, reduced with 10 mM DTT, modified with 40 mM iodoacetamide and trypsinized at a 1:100 enzyme-to-substrate ratio.

## Mass spectrometry analysis

The resulting tryptic peptides were resolved by reverse-phase chromatography on 0.075 X 200-mm fused silica capillaries packed with Reprosil reversed phase material (Dr. Maisch GmbH). The peptides were eluted with linear 65 minute gradients of 5 to 45% and 15 minutes at 95% acetonitrile, with 0.1% formic acid in water, at flow rates of 0.25  $\mu$ l/min. Mass spectrometry was performed by an ion-trap mass spectrometer (Orbitrap, Thermo) in a positive mode using repetitively full MS scan followed by collision induced dissociation (CID) of the 7 most dominant ions selected from the first MS scan.

#### Database search

The mass spectrometry data was analyzed using the Trans Proteomic Pipeline (TPP) Version 4.3 (Keller *et al.*, 2005). TPP-processed centroid fragment peak lists in mzXML format were searched against Xenbase (Bowes *et al.*, 2010). Duplicate identical sequences were removed and the resulting 16930 predicted proteins were supplemented with their 16930 corresponding decoy sequences (as described in http://www.matrixscience.com/help/decoy\_help.html). The database searches were performed using X! Tandem with k-score plugin through the TPP. Search parameters included: trypsin cleavage specificity with two missed cleavages, cysteine carbamidomethyl as a fixed modification, methionine oxidation and protein N-terminal acetylation as variable modifications. Peptide tolerance and MS/MS tolerance were set at 10 ppm and 0.8 Da, respectively. X! Tandem refinement included: semi style cleavage. Peptide and protein lists were generated following Peptide Prophet and Protein Prophet analysis using protein FDR of <1%.

## **Supplemental References**

Bowes, J.B., Snyder, K.A., Segerdell, E., Jarabek, C.J., Azam, K., Zorn, A.M., and Vize, P.D. (2010). Xenbase: gene expression and improved integration. Nucleic Acids Res. D607-612.

Keller, A., Eng, J., Zhang, N., Li, X.J., and Aebersold, R. (2005). A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol. Syst. Biol. *1*, 2005.0017.