
Appendix A. Brief introduction on the theoretical underpinnings of stKDE

Say the observed individuals are recorded by the realization (si,1, si,2, ti) where the triplet rep-

resents the latitude, longitude, and time i = 1, . . . , n. We presume that the realizations of cases

represent draws from an unknown distribution, that the data are stationary and follow a mixing

process, and allow for unknown correlation among occurrences over space and time. In order to

estimate f(s1, s2, t) we consider a nonparametric density estimator of the form,
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Equation (1) represents a nonparametric kernel estimator of an unknown density f(s1, s2, t)

where each observation represents the random occurrence of a case characterized by ordinates in

space and time (stKDE). The (s1, s2) ordinates are numeric datatypes (i.e., real-valued) while the

time variable is an ordered discrete datatype. Parametric estimation of densities consisting of a mix

of datatypes is referred to as “parametrically awkward” [1, page 419]. The nonparametric method

embodied in equation (1) is designed to effectively handle the mix of real-valued and discrete

variables encountered here.

In equation (1), the function k(·) is a traditional kernel for real-valued datatypes (e.g. Epanech-

nikov or Gaussian, see [8] and [7]), Kt(·) is a kernel function appropriate for discrete datatypes such

as that proposed by [1, page 419] for both unordered and ordered categories. The functions k(·) and

K(·) are simply weight (‘kernel’) functions that are appropriate for estimating density/probability

functions. The use of product kernel functions is commonplace in the literature (see [9, page 149-

151]). [2] labelled product kernel functions appropriate for mixed datatypes ‘generalised product

kernels’. The bandwidths (h1, h2, λ) are chosen via cross-validation hence the estimate is com-

pletely data-driven. Though it may not be immediately obvious, the spatial-temporal setting that

we consider here is a direct application of the method proposed in [3], hence a few words may be

in order.

Though s1 and s2 are ordinates (latitude and longitude), the spatial nature of the data does

not create problems in this setting. A density function f(s1, s2) where s1 and s2 represent pair-

wise random draws from real-valued random variables can be consistently estimated using kernel

methods under standard regularity assumptions. That is, if (s1, s2) represent (joint) draws from

two real valued random variables, whether these measure, say, returns on two assets (draws from

the real number line) or location in space (also draws from the real number line) makes no differ-

ence to the kernel estimator, provided that the distribution of disease in (s1, s2) space exists, is

stationary, smooth, and has finite moments. If these assumptions hold then we can consistently

estimate f(s1, s2) using kernel methods without having to presume that the parametric distribution

is known to the researcher. This case was treated in [8] and [7].

Nor does the discrete (ordered) nature of the time variable create problems in this setting. We

convert calendar time to UNIX time (a system for describing points in time, defined as the number

of days elapsed since midnight (UTC) January 1, 1970). If we let t denote random draws from a
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discrete ordered random variable, it creates no problems for the kernel method for estimating f(t)

providing you use a kernel that is appropriate for discrete support processes, which we do. This

case was treated in [1] and [5].

As noted above, the article [3] considers the case of nonparametric kernel density estimation

defined over a mix of real-valued and discrete random variables such as f(s1, s2, t), and the current

setting involving (s1, s2, t) (latitude, longitude, time) defined in equation (1) is but one such ap-

plications of this approach. Note that [3] explicitly treats the real-valued and unordered discrete z

case, while here we have ordered discrete z. However, the ordered case is addressed in [3] and the

key point is that the theoretical results are unaffected by whether the discrete variable is nominal

or ordinal.1 Though [3] explicitly treats the iid case, it is straightforward to show that the kernel

density estimator is consistent and that cross-validation delivers bandwidths that converge to the

optimal bandwidths with probability one for stationary weakly dependent mixing processes. For

details on how results for the iid case treated in [3] carry over to the weakly dependent setting,

see Racine and Li (2007, pages 537-541, “18.1 Density Estimation with Dependent Data”) which

demonstrates how almost sure convergence rates and limit distributions remain unchanged for ρ or

α-mixing processes. Identical results carry over for the mixed discrete-continuous case. In particu-

lar, note that the MSE convergence rate with weakly dependent data is the same as the independent

case treated in [4, page 537, Theorem 18.1]. The presence of the discrete variable t does not alter

these results, rather, it simply introduces a finite-sample bias term that is offset by the reduction

in variance brought about by smoothing across the discrete covariates.
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