Conf.	Loop extent	Salt bridge ^{c,d}	Aromatic	E2 contact	F268 ^{E2}	H270 ^{E2}	Simulation
			stacking ^{c,e}	number ^{1,g}		stacked	time
						to	
		D17 c2.63 D100El	D170 2.57 MIOF (6.48	F1 0		F268	20
AI	E1: $F1/7^{-1}$ -S185 ⁻¹	$D176^{-3.2}/R182^{-3.28}$	$F170^{-1}/W356^{-1}$	E1: 2	ın	no	20 ns
	E2: $G254 - H2/0$	D1/0 /K192 $D194^{E1}/K102^{3.28}$	F1/4 / $H1/8E177^{2.64} / E2C9^{E2}$	E3: 24			
	$(C_{237} - V_{203})$	D104 / K192 $D196^{3.22}/E259^{E2}$	$\Gamma 1 7 7 72.64 / \Gamma 2 7 0^{7.35}$	TMH: 230			
	E3. 0309 -13/3	$D^{2}66^{E^{2}}/K^{270^{E^{3}}}$	F177 / F579 $F180^{3.25} / F268^{E2}$				
		D200 /K370	$F200^{3.36}/F278^{5.42}$				
			$F200^{3.36}/W356^{6.48}$				
			$F268^{E2}/Y275^{5.39}$				
			F268 ^{E2} /F379 ^{7.35}				
			Y275 ^{5.39} /F278 ^{5.42}				
			Y275 ^{5.39} /W356 ^{6.48}				
			W279 ^{5.43} /F368 ^{6.60}				
			Y365 ^{6.57} /F368 ^{6.60}				
A2	E1: V179 ^{E1} -S185 ^{E1}	$D176^{2.63}/R182^{E1}$	F170 ^{2.57} /W356 ^{6.48}	E1:0	out	no	13 ns
	E2: $W255^{E2}$ -I271 ^{E2}	$D176^{2.63}/K192^{3.2}$	$F177^{2.64}/F189^{3.25}$	E3: 29			
	$(C257^{E2}-S265^{E2})^{a}$	0 E1 2.29	F177 ^{2.04} /F379 ^{7.55}	TMH: 256			
	E3: G369 ^{E3} -I375 ^{E3}	$D184^{E1}/K192^{3.28}$	$F200^{3.30}/Y275^{3.39}$				
		$D272^{5.56}/K370^{E3}$	$F200^{5.50}/F278^{5.42}$				
		D366°°°/K3732°	$F268^{-2}/F379^{-100}$				
			F2/8 /W 350 W 270 ^{5.43} /E268 ^{6.60}				
R 1	E1: E180 ^{El} S185 ^{El}	D176 ^{2.63} /P182 ^{E1}	$\frac{W279}{F170^{2.57}}$ F200 ^{3.36}	F1.0	out	1105	15 ns
DI	$F_2 \cdot W_{255}^{E_2} \cdot S_{262}^{E_2}$	$D170^{-7}K102^{-7}$ $D184^{E1}/K192^{-3.28}$	$F170^{2.57}/W356^{6.48}$	E1: 0 F3: 0	011	yes	15 115
	$(W255^{E2}-S262^{E2})^{a,b}$	$D_{366}^{6.58}/K_{370}^{E3}$	$F177^{2.64}/F379^{7.35}$	TMH· 141			
	E3: G369 ^{E3} -I375 ^{E3}	2000 /110/0	$F200^{3.36}/W356^{6.48}$				
			Y275 ^{5.39} /F278 ^{5.42}				
			Y365 ^{6.57} /F368 ^{6.60}				
A3	E1: V179 ^{E1} -R186 ^{E1}	R186 ^{3.22} /E258 ^{E2}	F170 ^{2.57} /F200 ^{3.36}	E1: 20	in	no	13 ns
	E2: $G254^{E2}$ -I271 ^{E2}	D366 ^{6.58} /K370 ^{E3}	F170 ^{2.57} /W356 ^{6.48}	E3: 1			
	$(C257^{E2}-S262^{E2})^{a}$		F177 ^{2.64} /F379 ^{7.35}	TMH: 238			
	E3: $V367^{E3}$ -L374 ^{E3}		$F200^{3.36}/W356^{6.48}$				
			$Y275^{3.39}/F278^{3.42}$				
	E1 HIOTEL CLOCEL	D17(263/D100El	Y365 ^{0.57} /F368 ^{0.00}	F1 1			25
B 2	E1: $H181^{-1}$ - $S185^{-1}$	$D1/6^{-100}/R182^{-1}$	$F1/0^{-1}/W 356^{-1}$ $V172^{2.59}/E101^{3.27}$	EI: I E2: 0	out	no	25 ns
	E2: L253 $-12/1$ (C25 4^{E2} L 26 0^{E2}) ^a	D184 / K192 $D186^{3.22} / E258^{E2}$	$F174^{2.61}/F191$	E3: U TMH: 312			
	(0234 - L200) F3: G369 ^{E3} -I375 ^{E3}	$D_{366}^{6.58}/K_{370}^{E3}$	F174 / $F177F177^{2.64}/F379^{7.35}$	1 WIII. 312			
	L5. 0507 -1575	D300 /K370	$F189^{3.25}/F268^{E2}$				
			$F200^{3.36}/Y275^{5.39}$				
			F200 ^{3.36} /W356 ^{6.48}				
			Y275 ^{5.39} /F278 ^{5.42}				
			Y275 ^{5.39} /W279 ^{5.43}				
			Y365 ^{6.57} /F368 ^{6.60}				
B3	E1: H179 ^{E1} -S185 ^{E1}	D176 ^{2.63} /R182 ^{E1}	F170 ^{2.57} / F200 ^{3.36}	E1: 30	in	yes	53 ns
	E2: $W255^{E2}$ -I271 ^{E2}	$K183^{E1}/D266^{E2}$	$F170^{2.57}/W356^{6.48}$	E3: 11			
	$(C257^{E2}-L260^{E2})^{a}$	$D184^{E1}/K192^{3.28}$	$F174^{2.61}/F381^{7.37}$	TMH: 231			
	E3: D366 ^{E3} -I375 ^{E3}	$R186^{3.22}/E258^{E2}$	$F177^{2.04}/F189^{3.25}$				
		D366 ^{6.58} /K370 ^{E3}	F177 ^{2.04} /F379 ^{7.35}				

 $\begin{array}{l} Table \ SI. \ Four \ conformations \ in \ E2_{dithiol} \ (conformers \ A1, \ A2, \ A3, \ and \ B1) \ and \ four \ conformations \ in \ E2_{disulfide} \ (conformers \ B2, \ B3, \ B4, \ and \ B5) \end{array}$

			F189 ^{3.25} /F268 ^{E2}				
			F189 ^{3.25} /F379 ^{7.35}				
			F200 ^{3.36} /W356 ^{6.48}				
			F268 ^{E2} /Y275 ^{5.39}				
			F268 ^{E2} /F379 ^{7.35}				
			$H270^{E2}/Y275^{5.39}$				
			Y275 ^{5.39} /F278 ^{5.42}				
			Y275 ^{5.39} /W279 ^{5.43}				
			$Y_{365}^{6.57}/F_{368}^{6.60}$				
R4	$E1 \cdot F180^{E1} - S185^{E1}$	$D184^{E1}/K192^{3.28}$	$F170^{2.57}/W356^{6.48}$	E1.14	out	no	36 ns
D 1	$E2 \cdot L^{253} = 1271^{E2}$	$K183^{E1}/E258^{E2}$	$F174^{2.61}/F177^{2.64}$	E1: 11 E3: 18	0111	no	50 115
	$(C257^{E2}-I_{2}^{2}-I_{2}^{2})^{a}$	$K192^{3.28}/D266^{E2}$	F177 ^{2.64} /F379 ^{7.35}	TMH: 359			
	(C257 E200)	$D272^{5.36}/K370^{E3}$	$F180^{3.25}/F268^{E2}$	1 WH1. 557			
	E5. 0509 -1575	$D_{272}^{-7} / K_{370}^{-1}$	$F_{200}^{3.36}/V_{275}^{5.39}$				
		D300 /K370	$F_{200}^{3.36} W_{256}^{6.48}$				
			F200 7 W 530 $F269^{E2}/F270^{7.35}$				
			$\Gamma_{200} / \Gamma_{5.39} / \Gamma_{200} 5.42$				
			12/3 / $F2/8X275^{5.39} (X1270^{5.43}$				
			Y 2/5 / W 2/9				
D 7		D17c ²⁶³ D100El	Y 305 /F 308	F1 0			10
B2	E1: $F180^{E1}$ -S185 ^{E1}	$D176^{2.63}/R182^{21}$	$F1/0^{2.67}/W356^{61.10}$	EI: 0	out	yes	10 ns
	E2: $L253^{22}$ - $D272^{22}$	$D1/6^{100}/K192^{3/20}$	$F177^{2.64}/F189^{3.25}$	E3: 8			
	$(L253^{22}-L260^{22})^{a,a}$	$D184^{E1}/K192^{5.26}$	F1// ^{2.04} /F3/9 ^{1.55}	TMH: 214			
	E3: $G369^{E3}$ -I375 ^{E3}	$D266^{12}/K370^{15}$	$F200^{3.30}/W356^{0.48}$				
			Y275 ^{3.39} /F278 ^{3.42}				
			Y365 ^{6.57} /F368 ^{6.60}				

^aThe residues forming the helical segment within E2 at the end of the simulation. It should be noted that residues $C257^{E2}$ -L260^{E2} for $E2_{disulfide}$ were constrained to be helical during the SA simulation (see MATERIALS AND METHODS).

^bH4 extends to include the E2 helical segment as part of H4.

^cOnly the extracellular half of the receptor is considered.

^dEstimated by measuring the distance between the side chain O atom of a negatively charged residue and the side chain N atom of a positively charged residue with the cut-off distance of 3.20 Å.

^eEstimated by measuring the distance between one atom from E2 and the other atom from either E1, E3, or the TM helices with the cut-off distance of 3.50 Å. His residue was not considered for simplicity.

^fEstimated by measuring the distance between the aromatic rings of two aromatic residues with the cut-off distance of 8.00 Å.

^gThe value calculated by averaging over the last 1 ns of the MD simulation.

Table SII. Molecular interaction energy and contact number analysis of $CB_1(E2_{dithiol})$ and $CB_1(E2_{dithiol})$

(i) Interaction energies between E2 and E1, E3, and TM helices

	CB ₁ (E2 _{dithiol})	$CB_1(E2_{disulfide})$	
E _{inter,E2} (total)	$-147.0(50.1)^{a}$	-252.9(32.1)	
E2/E1	-13.5(10.5)	-22.5(15.6)	
E2/E3	-28.9(28.2)	-4.1(4.2)	
E2/TMH	-104.6(26.0)	-226.0(33.2)	
0			

^aThe energy value with its standard deviation in parenthesis was averaged over the last 10 ns of the simulation.

(ii) Contact numbers between E2 and E1, E3, and the TM helices

	$CB_1(E2_{dithiol})$	$CB_1(E2_{disulfide})$
total	$257(24)^{a}$	248(28)
E2/E1	8(5)	7(7)
E2/E3	44(13)	26(10)
E2/TMH	205(19)	214(24)

^aThe energy value with its standard deviation in parenthesis was averaged over the last 10 ns of the simulation.

(iii)	Contact	number	analysis	of the	e extracellular	half	of	the	TM	helices	in	$CB_1(E2_{dithiol})$	and
CB_1	(E2 _{dithiol})												

	$CB_1(E2_{dithiol})$	$CB_1(E2_{disulfide})$	${\rm CB_1}^\dagger$
H1/H2	$21(6)^{a}$	28(8)	16(4)
H1/H7	35(11)	51(15)	60(14)
H2/H3	50(12)	36(14)	48(12)
H2/H4	1(2)	0	0
H2/H6	12(4)	10(5)	13(4)
H2/H7	77(13)	80(13)	75(12)
H3/H4	57(14)	62(12)	47(14)
H3/H5	31(9)	16(6)	20(9)
H3/H6	40(10)	51(13)	46(11)
H3/H7	0	0	0
H4/H5	19(8)	21(7)	22(10)
H5/H6	20(9)	21(8)	17(8)
H6/H7	77(14)	73(15)	91(13)

^aEstimated by counting the number of inter-atomic contacts with the cut-off distance of 3.50 Å. The value with its standard deviation in parenthesis was averaged over the last 10 ns of the simulation.

^bThe CB₁ receptor model³² whose TM helical bundle structure was same both in CB₁(E2_{dithiol}) and in CB₁(E2_{disulfide}) at the beginning of the respective simulations.

	$CB_1(E2_{dithiol})$	$CB_1(E2_{disulfide})$	CB_1^{b}
H1/H2	$70(12)^{a}$	73(13)	67(14)
H1/H7	28(6)	29(7)	25(7)
H2/H3	54(12)	56(10)	57(11)
H2/H4	32(6)	25(6)	30(11)
H2/H6	8(6)	6(4)	3(2)
H2/H7	10(7)	32(7)	33(6)
H3/H4	40(9)	36(11)	29(9)
H3/H5	118(17)	96(17)	115(16)
H3/H6	50(11)	74(16)	51(14)
H3/H7	0	1(1)	2(4)
H4/H5	0	0	0
H5/H6	58(13)	71(15)	54(12)
H6/H7	69(13)	81(18)	77(15)

(iv) Contact number analysis of the intracellular half of the TM helices in $CB_1(E2_{dithiol})$ and $CB_1(E2_{dithiol})$

^aEstimated by counting the number of inter-atomic contacts with the cut-off distance of 3.50 Å. The value with its standard deviation in parenthesis was averaged over the last 10 ns of the simulation.

^bThe CB₁ receptor model³² whose TM helical bundle structure was same both in CB₁(E2_{dithiol}) and in CB₁(E2_{disulfide}) at the beginning of the respective simulations.

Table SIII. Output from deconvolution of $E2_{\rm dithiol}$ and $E2_{\rm disulfide}$ CD spectra using CONTIN L analysis program $^{\rm a}$

Peptide	Helix 1	Helix 2	Strand1	Strand2	Turns	Unordered	Total	NRMSD
$E2_{dithiol}$	0.57	0.204	0	0.142	0.084	0	1	0.332
$E2_{disulfide}$	0.458	0.114	0	0	0.428	0	1	0.318
2								

^aRef. 53.

Figure S1. The RMSD plots for E2 (in red) as well as TMH (in black) of four conformations in $E2_{dithiol}$ (conformers A1, A2, A3, and B1) and our conformations in $E2_{disulfide}$ (conformers B2, B3, B4, and B5)

