Clerodane diterpenes from *Casearia arguta* that act as synergistic TRAIL sensitizers

Emily L. Whitson, Cheryl L. Thomas, Curtis J. Henrich, Thomas J. Sayers, James B. McMahon, and Tawnya C. McKee

S2	Supporting Info ¹ H NMR Spectrum of Argutin A (1) in CDCl ₃	Page 2
S 3	¹³ C NMR Spectrum of Argutin A (1) in CDCl ₃	Page 3
S4	¹ H NMR Spectrum of Argutin B (2) in CDCl ₃	Page 4
S5	¹³ C NMR Spectrum of Argutin B (2) in CDCl ₃	Page 5
S6	¹ H NMR Spectrum of Argutin C (3) in CDCl ₃	Page 6
S7	¹³ C NMR Spectrum of Argutin C (3) in CDCl ₃	Page 7
S8	¹ H NMR Spectrum of Argutin D (4) in CDCl ₃	Page 8
S9	¹³ C NMR Spectrum of Argutin D (4) in CDCl ₃	Page 9
S10	¹ H NMR Specturm of Argutin E (5) in CDCl ₃	Page 10
S11	¹³ C NMR Spectrum of Argutin E (5) in CDCl ₃	Page 11
S12	¹ H NMR Spectrum of Argutin F (6) in CDCl ₃	Page 12
S13	HSQC Spectrum of Argutin F (6) in CDCl ₃	Page 13
S14	¹ H NMR Spectrum of Argutin G (7) in CDCl ₃	Page 14
S15	HSQC Spectrum of Argutin G (7) in CDCl ₃	Page 15
S16	¹ H NMR Spectrum of Argutin H (8) in CDCl ₃	Page 16
S17	HSQC Spectrum of Argutin H (8) in CDCl ₃	Page 17
S18	¹ H NMR Spectrum of Argutin A (S)-MTPA Ester (1S) in CDCl3	Page 18
S19	¹³ C NMR Spectrum of Argutin A (S)-MTPA Ester (1S) in CDCl3	Page 19
S20	1H NMR Spectrum of Argutin A (R)-MTPA Ester (1R) in CDCl3	Page 20
S21	¹³ C NMR Spectrum of Argutin A (R)-MTPA Ester (1R) in CDCl3	Page 21
S22	¹ H NMR Spectrum of Deoxoargutin F (9) in CDCl ₃	Page 22
S23	¹³ C NMR Spectrum of Deoxoargutin F (9) in CDCl ₃	Page 23
S24	¹ H NMR Spectrum of Deoxoargutin F (S)-MTPA Ester (9S) in CDCl3	Page 24
S25	HSQC Spectrum of Deoxoargutin F (S)-MTPA Ester (9S) in CDCl3	Page 25
S26	¹ H NMR Spectrum of Deoxoargutin F (R)-MTPA Ester (9R) in CDCl3	Page 26
S27	HSQC Spectrum of Deoxoargutin F (R)-MTPA Ester ($9R$) in CDCl3	Page 27
T1	¹ H and ¹³ C NMR Data for Argutin A (R)- and (S)-MTPA Esters (1S , 1R)	Page 28
T2	¹ H and ¹³ C NMR Data for Deoxoargutin F (9) in CDCl ₃	Page 29
Т3	¹ H and ¹³ C NMR Data for Deoxoargutin F (R)- and (S)-MTPA Esters (9S , 9R)	Page 30

¹H NMR Spectrum of Argutin A (1) in CDCl₃

2

¹³C NMR Spectrum of Argutin A (1) in CDCl₃

¹H NMR Spectrum of Argutin B (2) in CDCl₃

4

¹³C NMR Spectrum of Argutin B (2) in CDCl₃

¹H NMR Spectrum of Argutin C (3) in CDCl₃

¹³C NMR Spectrum of Argutin C (3) in CDCl₃

¹H NMR Spectrum of Argutin D (4) in CDCl₃

¹³C NMR Spectrum of Argutin D (4) in CDCl₃

¹H NMR Spectrum of Argutin E (**5**) in CDCl₃

¹³C NMR Spectrum of Argutin E (5) in CDCl₃

¹H NMR Spectrum of Argutin F (6) in CDCl₃

¹H NMR Spectrum of Argutin G (7) in CDCl₃

f1 (ppm)

A

HSQC Spectrum of Argutin H (8) in CDCl₃

17

f1 (ppm)

¹H NMR Spectrum of Argutin A (S)-MTPA Ester (**1S**) in CDCl₃

¹³C NMR Spectrum of Argutin A (S)-MTPA Ester (**1S**) in CDCl₃

¹H NMR Spectrum of Argutin A (*R*)-MTPA Ester (**1**R) in CDCl₃

¹³C NMR Spectrum of Argutin A (*R*)-MTPA Ester (**1**R) in CDCl₃

¹³C NMR Spectrum of Deoxoargutin F (9) in CDCl₃

23

¹H NMR Spectrum of Deoxoargutin F (S)-MTPA Ester (9S) in CDCl₃

24

HSQC Spectrum of Deoxoargutin F (S)-MTPA Ester (9S) in CDCl₃

f1 (ppm)

¹H NMR Spectrum of Deoxoargutin F (*R*)-MTPA Ester (**9R**) in CDCl₃

HSQC Spectrum of Deoxoargutin F (R)-MTPA Ester (9R) in CDCl₃

		1S		1R	$\Delta \delta^{SR}$
position	δ _c	δ _H mult (<i>J</i> , Hz)	δ _C	δ _H mult (<i>J</i> , Hz)	$\delta^S - \delta^R$
1a	27.1	2.08, ddd (13.8, 5.7, 5.3)	27.1	2.07, ddd (13.9, 5.8, 5.5)	+0.01
1b		1.95, m		1.93, ^b m	+0.02
2	65.7	5.53, br t (4.0)	65.6	5.50, br t (4.1)	+0.03
3	124.1	6.01, br d (4.0)	124.1	5.89, br d (4.1)	+0.12
4	144.1		144.1		
5	51.9		51.8		
6	77.8	5.05, dd (12.1, 4.0)	77.7	5.02, dd (12.1, 3.9)	+0.03
7a	32.7	1.80, ddd (13.0, 6.8, 4.0)	33.1	1.92, ^b m	-0.12
7b		1.56, ddd (13.0, 13.0, 12.1)		1.67, ^b m	-0.11
8	36.3	1.90, ^a m (6.8)	36.4	1.93, ^b m (6.7)	-0.03
9	37.9		37.9		
10	37.9	2.37, dd (13.8, 3.5)	37.9	2.34, dd (13.9, 3.6)	+0.03
11a	30.5	2.21, ^b m	30.6	2.22, ^b m	-0.01
11b		1.64, ^a m		1.67, ^b m	-0.03
12	129.0	5.35, br d (7.6)	129.0	5.35, br d (7.8)	0.00
13	136.0	_	136.1		
14	141.4	6.28, dd (17.3, 10.7)	141.4	6.28, dd (17.3, 10.8)	0.00
15a	111.4	5.06, d (17.3)	111.4	5.07, d (17.3)	-0.01
15b		4.91, d (10.7)		4.92, d (10.7)	-0.01
16	12.2	1.63, s	12.2	1.64, s	-0.01
17	15.8	0.91, d (6.8)	15.7	0.94, d (6.7)	-0.03
18	95.7	6.44, t (1.6)	95.5	5.72, t (1.6)	+0.72
19	97.3	6.51, s	97.3	6.57, s	-0.06
20	25.2	0.82, s	25.2	0.83, s	-0.01
1′	166.0	—	166.0		
2′	115.4	5.64, d (11.3)	115.4	5.62, d (11.3)	+0.02
3′	146.5	6.60, t (11.3)	146.6	6.59, t (11.3)	+0.01
4′	127.1	7.38, [⊳] m	127.1	7.37, [⊳] m	+0.01
5′	147.0	6.11, ddd (15.1, 7.5, 7.1)	147.1	6.11, ddd (15.2, 7.7, 7.1)	0.00
6′	33.4	2.20, [°] m	33.4	2.20, ^Ď m	0.00
7′	28.7	1.43, ddd (14.5, 7.4, 7.1)	28.8	1.43, ddd (14.6, 7.4, 7.1)	0.00
8′	31.7	1.28, [°] m	31.7	1.28, ^b m	0.00
9′	22.7	1.29, [°] m	22.7	1.29, ⁵ m	0.00
10′	14.3	0.87, t (6.7)	14.2	0.87, t (6.7)	0.00
18-OAc	170.1	—	169.7 [°]		
	21.5	2.03, s	21.4	1.95, s	+0.08
19-OAc	169.7		169.6 [°]		
0	22.1	1.92, s	22.0	1.89, s	+0.03
ΟΜΤΡΑ		—			
C=0	167.1	—	166.9	—	
OMe	55.6	3.44, s	56.1	3.60, s	
	128.9	7.41, m	128.8	7.38, [°] m	
	129.0	7.40,° m	130.0	7.37, [°] m	
	127.9	7.50. m	127.2	7.48. [°] m	

Supplemental Table 1. NMR Data for the MTPA esters of argutin A (1S, 1R) (600 MHz, CDCl₃)

^aSignal obscured by overlapping methyl signal. ^bSignals overlapped. ^cNot all MTPA carbons were assigned. ^dAssignment may be reversed.

	deoxoargutin F (9)		
position	δ_{C}	δ _H mult (<i>J</i> , Hz)	
1a	27.1	2.03, m	
1b		1.93, ^a m	
2	65.7	5.47, br t (4.1)	
3	122.1	5.98, br d (4.1)	
4	145.1		
5	54.0		
6	73.4	3.74, dd (11.5, 4.1)	
7a	37.8	1.69, ^b m	
7b		1.65, ^b m	
8	37.3	1.70, ^b m (6.6)	
9	38.7		
10	40.7	2.09, m	
11a	39.9	1.71, ^b m	
11b		1.36, m	
12	67.7	4.46, br d (7.8)	
13	150.1	—	
14	136.6	6.28, dd (17.8, 11.2)	
15a	115.4	5.44, d (17.8)	
15b		5.15, d (11.2)	
16a	115.1	5.13, s	
16b		5.12, s	
17	16.0	1.04, d (6.6)	
18	95.3	6.72, br t (1.5)	
19	97.7	6.39, s	
20	24.5	1.06, s	
1′	166.1	—	
2′	115.4	5.61, d (11.3)	
3′	146.3	6.58, t (11.3)	
4'	127.0	7.37, dd (15.3, 11.3)	
5′	147.0	6.10, ddd (15.3, 7.7, 7.0)	
6′	33.2	2.19, ddd (14.6, 7.4, 7.0)	
7′	29.0	1.43, ddd (14.4, 7.4, 7.1)	
8′	31.8	1.27, ^b m	
9′	22.8	1.28, ^b m	
10′	14.3	0.86,t (6.8)	
18-OAc	170.3	_	
	21.3	2.06, s	
19-OAc	170.0	—	
	21.9	1.93, s	

Supplemental Table 2. NMR data for deoxoargutin F (9) (600 MHz, CDCl₃)

^aSignal obscured by overlapping methyl signal. ^bSignals overlapped.

		9S ^a		9R ^a	$\Delta \delta^{SR}$
position	δ _C	δ _H mult (<i>J</i> , Hz)	δ_{C}	δ _H mult (<i>J</i> , Hz)	
1a	27.1	2.02, ^b m	26.9	1.99, [°] m	+0.03
1b		1.94, ^b m		1.94, ^b m	0.00
2	65.3	5.49, br t (4.0)	65.1	5.44, [°] br t (4.1)	+0.05
3	124.0	5.98, br d (4.0)	124.0	5.85, br d (4.1)	+0.13
6	77.5	4.97, dd (12.1, 3.9)	77.5	4.92, dd (12.3, 4.0)	+0.05
7a	32.4	1.70, ddd (13.2, 6.8, 3.9)	32.7	1.76, ddd (13.2, 6.7, 3.9)	-0.06
7b		1.45, [°] m		1.50, m	-0.05
8	36.2	1.77, m (6.9)	36.4	1.72, m (7.0)	+0.05
10	42.4	2.06, dd (13.7, 3.6)	41.9	2.05, dd (13.8, 3.5)	+0.01
11a	38.9	1.99, ^b m	38.1	2.02, ^c m	-0.03
11b		1.44, ^c m		1.43, [°] m	+0.01
12	75.4	5.63, dd (7.0, 3.3)	75.3	5.66, dd (7.1, 2.8)	-0.03
14	133.9	6.07, ^c dd (17.7, 11.2)	134.0	6.17, dd (17.6, 11.1)	-0.10
15a	117.0	5.36, d (17.7)	117.2	5.43, ^c d (17.6)	-0.07
15b		5.07, d (11.2)		5.15, d (11.1)	-0.08
16a	117.4	5.19, s	118.1	5.25, s	-0.06
16b		5.13, s		5.21, s	-0.08
17	15.9	0.83, d (6.9)	15.7	0.75, d (7.0)	+0.08
18	95.4	6.44, br t (1.6)	94.9	5.75, br t (1.6)	+0.69
19	97.7	6.34, s	97.5	6.35, s	-0.01
20	23.2	0.91, s	23.1	0.76, s	+0.15
2′	115.1	5.60, d (11.3)	115.1	5.61, d (11.3)	-0.01
3′	146.6	6.59. t (11.3)	146.8	6.59, t (11.3)	0.00
4′	127.2	7.36, ^c m	127.1	7.37, [°] m	0.00
5′	147.2	6.09, ^c m	147.2	6.10, ddd (15.3, 7.8, 7.4)	0.00
6′	33.3	2.20, ddd (14.7, 7.4, 7.2)	33.2	2.20, ddd (14.7, 7.7, 7.4)	0.00
7′	28.7	1.43, ^c m	28.7	1.43, [°] m	0.00
8′	31.9	1.28, ^c m	31.8	1.28, [°] m	0.00
9′	22.8	1.28, ^c m	22.8	1.28, [°] m	0.00
10′	14.2	0.86, t (6.9)	14.1	0.86, t (7.0)	0.00
18-OAc	21.3	2.03, s	21.7	1.94, [°] s	+0.09
19-OAc	22.1	1.96, s	21.7	1.94, [°] s	+0.02
ΟΜΤΡΑ					
OMe	55.4	3.44, s	55.7	3.58, s	
OMe	55.3	3.38, s	55.6	3.49, s	
	128.2	7.41, ^c m	128.0	7.36, [°] m	
	129.6	7.41, ^c m	129.2	7.36, ^c m	
	128.8	7.34, ^c m	127.5	7.33, [°] m	—
	129.4	7.34, ^c m	128.7	7.33, ^c m	
	127.9	7.50, m	127.3	7.46, m	

Supplemental Table 3. NMR Data for the MTPA esters of 9 (9S, 9R) (600 MHz, CDCl₃)

^aQuaternary carbons were not assigned. ^bSignal obscured by overlapping methyl signal. ^cSignals overlapped.