## **Supplementary Information**

### **Supplementary Methods**

GdnHCl denaturation performed by reversed titration- Briefly, the titration was performed by titrating A $\beta$  solution in Buffer A containing <0.1 M GdnHCl into an unfolded A $\beta$  solution in Buffer A containing 1.5 or 2 M GdnHCl. The desired metal ion concentration, 25  $\mu$ M of A $\beta$ , and 5  $\mu$ M of Bis-ANS were present in both solutions. The duration for each titration was approximately 30 s and each set of denaturation experiment was less than 1 h. The Bis-ANS fluorescence emission at 490 nm was collected, averaged, and normalized. The normalized emission intensity versus GdnHCl concentration was plotted.

*GdnHCl denaturation monitored by tyrosine emission-* The equilibrium unfolding was performed as described in "Experimental Procedures" except the samples were in the absence of Bis-ANS and the intrinsic tyrosine fluorescence were monitored. The samples were excited at 270 nm and emission intensities at 300 nm were collected. The signals were plotted against GdnHCl concentration.

### **Supplementary Figure Legends**

**Supplementary Fig. 1.** Normalized Bis-ANS spectra of A $\beta$  in the absence and presence of the metal ions. A $\beta$  in the absence ( $\bullet$ ) and presence of 200  $\mu$ M Zn<sup>2+</sup> ( $\bigtriangledown$ ), 200  $\mu$ M Cu<sup>2+</sup> ( $\triangle$ ), 200  $\mu$ M Fe<sup>3+</sup> ( $\bigcirc$ ), and 500  $\mu$ M Al<sup>3+</sup> ( $\square$ ) are shown. The data were normalized to Bis-ANS fluorescence intensity at 500 nm of A $\beta$  without the metal ions. Panel (A) and (B) show the spectra of all conditions in two ranges of wavelength: 450-550 and 465-515 nm. Panel (C) and (D) show the spectra of A $\beta$  alone and A $\beta$  with Cu<sup>2+</sup> ( $\triangle$ ) or Fe<sup>3+</sup> in two ranges of wavelength: 450-550 and 465-515 nm.

**Supplementary Fig. 2.** Tyrosine fluorescence spectra of A $\beta$  in various concentrations of (A) Zn<sup>2+</sup>, (B) Cu<sup>2+</sup>, (C) Fe<sup>3+</sup>, and (D) Al<sup>3+</sup>. The concentrations of the metal ions are colored as indicated.

**Supplementary Fig. 3.** Binding kinetics of  $Zn^{2+}$ ,  $Cu^{2+}$ ,  $Fe^{3+}$ , and  $Al^{3+}$  with  $A\beta$ . Intrinsic tyrosine fluorescence of  $A\beta$  in the absence ( $\bullet$ ) and presence of  $Zn^{2+}(\nabla)$ ,  $Cu^{2+}(\triangle)$ ,  $Fe^{3+}(\bigcirc)$ ,  $Al^{3+}(\Box)$  were monitored with excitation at 270 nm. Exponential fits for  $Zn^{2+}$ ,  $Fe^{3+}$ , and  $Al^{3+}$  are shown in solid lines and the residuals are shown above.

**Supplementary Fig. 4.** Bis-ANS fluorescence, tyrosince fluorescence, and far-UV CD spectra of A $\beta$  in native (<0.12 M GdnHCl) and denatured (3 M GdnHCl) condition. (A) Bis-ANS fluorescence, (B) tyrosine fluorescence, and (C) far-UV CD spectra of "native" and unfolded A $\beta$  are shown in solid and dashed lines, respectively.

**Supplementary Fig. 5.** GdnHCl denaturation of Aβ in the absence and presence of the metal ions. (A) GdnHCl denaturation of Aβ monitored by Bis-ANS fluorescence. Data obtained from forward titration are shown as follows: Aβ in the absence (♦) and the presence of 25 μM Zn<sup>2+</sup> ( $\nabla$ ), 25 μM Cu<sup>2+</sup> (Δ), 50 μM Fe<sup>3+</sup> ( $\bigcirc$ ), and 100 μM Al<sup>3+</sup> ( $\square$ ). Data obtained from reverse titration are colored as follows: Aβ in the absence (♦, black) and the presence of 25 μM Zn<sup>2+</sup> (▼, green), 25 μM Cu<sup>2+</sup> (▲, blue), 50 μM Fe<sup>3+</sup> (●, orange), and 100 μM Al<sup>3+</sup> (■, red). (B) GdnHCl denaturation of Aβ monitored by tyrosine fluorescence. Aβ in the absence (●) and the presence of 25 μM Zn<sup>2+</sup> ( $\nabla$ ), 25 μM Cu<sup>2+</sup> (△), 50 μM Fe<sup>3+</sup> (○), and 100 μM Al<sup>3+</sup> (□) are shown. The data scattering was primarily due to the small differences resided in tyrosine fluorescence between "native" and unfolded Aβ.

**Supplementary Fig. 6.** Oligomerization and fibrillization of A $\beta$  in the presence of Al<sup>3+</sup> in neutral pH monitored by ThT, dot blotting, and TEM. The samples were prepared in 10 mM Tris-HCl, pH 7.85, to insure neutral pH in the solution after addition of Al<sup>3+</sup>. (**A**) ThT assay. A $\beta$  in the absence and presence of 100, 250, and 500  $\mu$ M of Al<sup>3+</sup> are shown in black, blue, magenta, and green. (**B**) The end-point products were subjected to dot blotting probed by A11 and 6E10 antibodies. (**C**) The end-point products of A $\beta$  in the presence of 250  $\mu$ M Al<sup>3+</sup> were centrifuged as described in text. The supernatant and pellet were subjected to A11 and 6E10 dot blotting. (**D**) TEM images of the total protein before centrifugation (scale bar = 200 nm) as well as the supernatant and pellet after centrifugation (scale bar = 100 nm).

**Supplementary Fig. 7.** Far-UV CD of the end-point products of Aβ aggregation with and without the metal ions. Aβ in the absence ( $\bullet$ ) and in the presence of 25 µM Zn<sup>2+</sup> ( $\bigtriangledown$ ), 25 µM Cu<sup>2+</sup> ( $\triangle$ ), 50 µM Fe<sup>3+</sup> ( $\bigcirc$ ), and 250 µM Al<sup>3+</sup> ( $\square$ ) are shown.

| [Al <sup>3+</sup> ] (µM) | Tris buffer, pH 7.4 | Tris buffer, pH 7.85 |
|--------------------------|---------------------|----------------------|
| 0                        | 7.4                 | 7.85                 |
| 25                       | 7.37                | 7.82                 |
| 50                       | 7.32                | 7.79                 |
| 100                      | 7.26                | 7.74                 |
| 200                      | 7.08                | 7.68                 |
| 300                      | <u>6.86</u>         | 7.64                 |
| 400                      | <u>6.45</u>         | 7.58                 |
| 500                      | <u>5.25</u>         | 7.5                  |
| 600                      | <u>4.91</u>         | 7.39                 |
| 700                      | <u>4.78</u>         | 7.28                 |
| 800                      | <u>4.70</u>         | 7.14                 |
| 900                      | 4.65                | <u>6.95</u>          |
| 1000                     | <u>4.59</u>         | <u>6.65</u>          |

**Supplementary Table 1.** The pHs of various aluminum concentrations prepared in 10 mM Tris-HCl, pH 7.4 or pH 7.85, at room temperature. The acidic pHs are underlined.

**Supplementary Table 2.** Kinetic parameters of  $A\beta$  and the metal ion binding in the millisecond time scale.

|                    | <b>c</b> <sub>1</sub> | $\mathbf{k}_1  (\mathbf{sec}^{-1})$ | <b>c</b> <sub>2</sub> | $k_2 (sec^{-1})$ |
|--------------------|-----------------------|-------------------------------------|-----------------------|------------------|
| $\mathbf{Zn}^{2+}$ | -0.127                | 0.125                               | -                     | N/A              |
| Cu <sup>2+</sup>   |                       | N/                                  | 'A                    |                  |
| Fe <sup>3+</sup>   | 0.0712                | 3.455                               | 0.1243                | 0.4345           |
| $Al^{3+}$          | -0.0267               | 6.067                               | -0.0186               | 0.0915           |

c and k are the amplitudes and rate constants for the kinetic phases occurred between 0.005 to 100 sec.

Supplementary Fig. 1



## **Supplementary Fig. 2**





# Supplementary Fig. 4



Supplementary Fig. 5





Supplementary Fig. 7

